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Abstract 

Hardware has become more prone to faults, due to wear-out and faults caused during the 

manufacturing process. The reliability of hardware is becoming more dependent on the 

ability to continually adapt to faults and current fault tolerant approaches are susceptible 

to faults. A computational model of biological self-repair in the brain, derived from 

observing the distributed role of astrocytes (a glial cell found in the mammalian brain), 

has captured self-repair within neural networks; these are known as neuro-glia networks. 

 

Astrocytes have been shown to facilitate biological self-repair in silent or near silent 

neurons in the brain by increasing the Probability of Release (PR) in healthy synapses. 

Astrocytes modulate synaptic activity, which leads to increased or decreased PR. To 

date, this has been proven with computational modelling and therefore, the next step is 

to replicate this self-repair process in hardware to provide self-repairing electronic 

information processing systems. A key challenge for hardware neuro-glia networks 

implementation is the facilitation of scalable communication between interacting neurons 

and astrocyte cells. There are large volumes of neurons/ astrocytes with different 

communication patterns and this network is viewed as a two-tiered network: 

1. High speed temporal spike event (neural network) 

2. Low speed numerical inositol trisphosphate information exchange (astrocyte 

network). 

This thesis addresses the key challenge of providing scalable communication for a neuro-

glia network with low-level Networks-on-Chip (NoC) topologies. This network supports 

astrocyte to neuron/synapse communication at a local level and astrocyte communication 

at a global level i.e. the astrocyte network. The astrocyte process is inherently slow, thus 

a ring topology exploits this slow change and sacrifices high throughput for a low area 

overhead, this is analogous to the astrocyte process. This astrocyte was applied in 

hardware and results demonstrate that novel ring topology provides a trade-off between 

low area/interconnect wiring overhead whilst supporting realistic communication speeds 

for both the slow-changing data between astrocytes and the higher throughput neuron 

networks. 
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 Chapter 1: Introduction 

 1.1 Background 

Computing has advanced every aspect of our species from exploring the universe, the 

curiosity rover on Mars [1] and Juno on Jupiter [2], to the human brain exploring how the 

brains processes information in a fast and efficient manner. Scientists and engineers look 

to biology for inspiration. Over recent years humans have pushed the boundaries of 

computing and the technology used for computation. Computational performance using 

central processor units (CPUs) allows computers to perform a large number of 

calculations sequentially, therefore, computers can be used to solve complex problems. 

The hardware is based on sequential computing using single core processors and it is 

therefore limited; it is power hungry and inefficient because it performs calculations one 

after another. Using multiple CPUs can allow computers to operate with some parallelism 

but it is limited. The brain uses its innate parallel infrastructure to process information and 

this is much faster and much more efficient for complex problem solving. More recently, 

research has been carried out to mimic how the brain processes information using the 

timing and frequency of spikes to encode information [3]. Neurons process information in 

highly parallel manner, harnessing huge amounts of processing power efficiently. Models 

have been derived to replicate and emulate neurons and how they process information, 

and although these models are evidently based on biology, (i.e. neurons and human brain 

performance) there is still a lot to be desired i.e. NN applications cannot compare to the 

brain in regards to pattern recognition challenges such as visual and speech recognition 

[4], [5] as they don’t have the same performance, are inefficient in terms of both time and 

computational power. This is because neural network applications use supervised 

learning for classification, this requires training, and due to the vast amount of data it is 

mostly done offline. Training requires the user to input data and “train the network” by 

using labelled outputs, another downfall is that software approaches lack efficiency and 

use up computational resources. Neural networks typically have one application specified 

by the user. 
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SNN applications overcome the computational and performance bottlenecks of traditional 

NNs and are based on how the brain processes data. SNNs differ from traditional NNs as 

information is encoded in spikes, this is more efficient and analogous to how the brain 

processes information but again the network is trained offline before it can be deployed. 

There is also the issue that simulating SNNs on hardware is computationally intensive but 

Neuromorphic hardware such as TrueNorth aims to replicate inherent parallelism by using 

hardware which deviates from traditional Von Neumann architecture as each neuron has 

memory, computational power and a communication aspect. There are however 

promising real-world applications of SNNs in audio processing [6] and image processing 

[7]. 

 

Self-repair is highly sought after in electronic systems due to technology becoming much 

smaller in size (geometric scaling), resulting in electronic systems becoming more prone 

to faults [8]. The ability to repair and tolerate faults leads to more reliable and robust 

systems. To maintain functionality and increase operational lifetime of an electronic 

system, a method of fault tolerance or self-repair is required [9]. Current fault tolerant 

mechanisms are based on coarse grained redundancy and employ the use of a central 

repair-decision agent to either find faults or correct them, such as Triple Mode 

Redundancy (TMR), which is typically used in mission critical systems [10]. TMR is the 

process of replicating critical components and using a comparator to detect 

discrepancies. This vastly increases area overhead and relies heavily on spare or 

redundant computing resources. The key weaknesses of existing approaches is limited 

granularity and the lack of a distributed repair-decision mechanism.  

 

SNNs typically run on specialised hardware, this hardware is typically deployed in harsh 

environments and therefore, the hardware must use a form of fault tolerance. Rather than 

look at the electronic hardware, an SNN has neurons connected to a number of inputs; 

the network is trained to classify this data based on the inputs and information is passed 

via a huge number of synapses. Although the SNN may be susceptible to electronic 

failures and faults e.g. a sensor failing; rather than becoming completely useless, it is 

possible to employ what can be considered as a graceful degradation. 
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Recent research has shown that biological traits such as fine grained repair and 

distributed repair-decision making are performed in the brain via networks of glia cells 

(astrocytes) [11], [12]. It has been said there are 100 billion neurons and one trillion glial 

cells, with a glia to neuron ratio of 10:1. Even though such estimations are debated [13], 

it is the inherent parallelism and features such as fault tolerance and low-power 

consumption that have us look to the brain for inspiration. It has been discovered that 

astrocytes within the brain mediate synaptic plasticity [14] and this allows astrocytes to 

actively increase or decrease the probability of release (PR) of a synapse. Self-repair can 

be observed across faulty synapses when the PR on healthy neuron-synapses is 

increased, i.e. firing activity can be repaired to pre-fault levels, even with a substantial 

amount of faults (80%) [12].  

 

In particular, computational models of such repair have been successfully captured and 

applied to spiking neural networks (SNNs) [15]. An SNN is a neural network which uses 

the timing and frequency of spikes to propagate information; a spike train is used to 

encode information. The research in [15] demonstrates how low neuron firing activity can 

be repaired at fine-grained levels, i.e. the synapses. The healthy synapses can be 

strengthened which enables the neuron to regain functionality (spiking). This can result 

in self-repair across the spiking neural network. The cell responsible for self-repair has 

been identified as the astrocyte. Astrocytes are highly distributed within networks of 

neurons [15]. This neuro–glia network paradigm addresses the key self-repair 

requirements of fine granularity and distributed decision making and this sets the focus 

of this PhD research.   

 

There are a number of difficult challenges to overcome in order to realise a neuro-glia 

network in hardware: 

 The realisation of both local and global communications within a neuro-glia 

network. Using astrocytes and providing self-repair requires a hierarchy of 

communication. 

 Applying self-repair within a neuro-glia network is two separate networks working 

in unison; an SNN and an astrocyte network. There are additional interconnect 
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requirements including additional complexity and communication. This is a neural 

network with the functionality of an SNN for classification and astrocytes for self-

repair, therefore, this application of self-repair is applied within an existing SNN 

framework.  

 The scalability requirements, as the network scales the communication 

infrastructure must support the additional processing and communication 

requirements. The timing of communication between neuron and astrocyte 

networks diverges; a neural network emphasises throughput. The astrocyte is a lot 

slower process which focuses on self-repair and supporting the network and 

synapses. The network must be able to accommodate both communication 

processes and keep these working in unity. 

 

One of the key challenges in progressing neuro–glia networks to hardware is connecting 

a network of astrocytes with an SNN. Astrocytes connect to groups of synapses and also 

form large networks of their own. Emulating a neuro–glia network in hardware introduces 

additional challenges such as increased complexity of the network, increased wiring 

interconnect overheads to maintain communication within a network and dealing with 

different time scales between neurons and astrocyte. There, we seek    a scalable method 

of interconnecting astrocytes to astrocytes, and astrocytes to neurons, i.e. realise a low 

area and power strategy. 

 

Networks-on-Chip (NoC) has emerged as a scalable approach for interconnecting many 

cores on a single chip, and is based on network engineering approaches over physical 

wires, buses and crossbars [16]–[18]. Therefore, we can look to exploit this mechanism 

in a manner which facilitates scalable data exchanges between neurons, synapses and 

astrocytes. This thesis explores the following: 

 

Objectives: 

1. Can HW models of networks of glia cells be successfully scaled using network on 

chip architecture?” 
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2. Is a ring-topology suitable for astrocyte to neuron and astrocyte to astrocyte 

communication at the low level of a network on chip hierarchy? 

 

3. Is this topology capable of enabling both fault tolerance capability in synaptic 

connections and overall network scalability? 

 

 1.2 Thesis Contributions 

This thesis covers a substantial body of research into self-repair. This self-repair is an 

innate feature of the human brain, provided by astrocytes. This thesis proposes using bio-

inspired hardware within an existing neural network framework using on-chip interconnect 

strategies. That is, research into how the astrocyte process works and communicates 

with neurons and combining the features of astrocytes with neural networks, more 

specifically SNNs and H-NoC. The resulting contributions are the initial steps into realising 

large scale neuroglia networks using existing features of SNNs combined with a digital 

astrocyte in hardware thus exploring neuro-glia networks using a scalable field-

programmable gate array (FPGA) interconnect. 

 

The contributions presented within this thesis are: 

1. A novel NoC interconnect based on using a ring topology to communicate e –SP 

for local communication in a neuro-glia network between neurons and astrocytes. 

This trades off area for communication speed (Chapter 5). 

2. Detailed analysis of area and scalability, in regard to keeping low hardware 

overheads using a ring-based topology using NoC (Chapter 5). 

3. Applying this interconnect for local commutation between astrocytes and neurons 

within an existing framework: Hierarchical Network on Chip (H-NoC) (Chapter 5). 

4. A novel NoC router for global communication in a neuro-glia network in astrocyte 

networks. The astrocyte router is based on using a ring topology and uses low 

level logic to average and communicate IP3 to all associated astrocytes (Chapter 

6). 
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5. An analysis of area, power and scalability using an astrocyte tile router for 

communication between astrocytes. A trade-off between the biological time scale 

and low overheads in hardware (Chapter 6). 

6. Validating the NoC interconnect in FPGA hardware using an example mobile 

robotic car (Chapter 7). 

 

 1.3 Thesis Outline 

The outline of this thesis is as follows: 

 

Chapter 2 provides a review of self-repair, astrocytes and neurons, and their role in 

computational software and hardware. From the biochemical reactions to computational 

neural networks, i.e. from biology to hardware. This provides an insight into the biological 

and computational motivation behind self-repair.  

 

Chapter 3 investigates the application of the NoC paradigm as a hardware interconnect 

capable of providing a large-scale neuro-glia network with desired scalability. The chapter 

initially reviews NoC features, from topologies to existing NoC solutions in hardware. A 

review of current methods of fault tolerance and self-repair as well as a review of 

mechanisms already in place to facilitate self-repair is also provided. There is also a 

review of biological self-repair and the aim of implementing this self-repair process in a 

Neuro-glia network. The latter part of the chapter focuses on the challenges of 

implementing a neuro-glia network using a NoC interconnect. 

 

Chapter 4 highlights why self-repair is desirable and why to date, current self-repair or 

fault tolerant approaches come at large overheads e.g. TMR. In particular, biologically 

inspired self-repair has been recently shown to provide fine grained and distributed self-

repair using computational models, but due to limited scalability and performance 

constraints, require more creative, high performance and robust means to explore further. 
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Chapter 5 outlines the interactions and communication exchange between neurons and 

astrocytes, this being a local communication exchange. This chapter contributes a novel 

low-level NoC ring topology which facilitates astrocyte to neuron communication. The 

main focus is on the steps taken to implementing a ring topology and communication 

protocol. The results show that the e-SP ring provides a low area scalable interconnect 

solution to communicating e-SP to associated neurons within a node facility. 

 

Chapter 6 addresses global interactions of a neuro-glia network and astrocyte to 

astrocyte interactions in hardware. It provides an overview of the interactions and 

communication exchange between astrocytes as a network, this being a global 

communication exchange. The main focus is on the steps taken to implementing a novel 

astrocyte router. The astrocyte router connects eight astrocytes in a ring topology and 

uses serial communication, trading off speed for area. The router uses a novel dynamic 

scheduler and token system to manage the synchronous aspects of astrocytes within the 

astrocyte network balancing urgency using timing and token requests as thresholds. This 

is to provide communication protocol for future use in neuro-glia networks, thereby 

providing a scalable solution to this interconnect challenge. FPGA results demonstrate 

the astrocyte router provides a good trade-off between low area and low power to 

interconnect overhead and relatively low communication speed. 

 

Chapter 7 presents results on hardware validation of the interconnect strategies and 

demonstrate the self-repair functionality in FPGA hardware using an example: a mobile 

robot. The chapter reviews this mobile robot which uses a spiking astrocyte-neuron 

network. The ring topology (Chapter 5) is applied to the existing hardware to communicate 

signalling data to provide the neural network with a self-repair capability. This is a real-

world application of a SNN with self-repair and results are presented that show that if the 

synapses within the neural network are faulty, the neuro-glia network has the ability to 

adapt and repair and maintain the direction and speed. Results have shown that with up 

to 80% of faulty synapses the network can repair and restore pre-fault functionality. 
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Chapter 8 draws a conclusion to the thesis and discusses the contributions. There is also 

a section indicative of future work which may be carried out to extend the research 

presented in this thesis. 

 

  1.4 Publications 

This section presents the papers and publications which have been peer-reviewed 

publications in conferences and journals during this thesis: 

 

 1.4.1 Conference papers 

G. Martin, J. Harkin, L. J. McDaid, J. J. Wade, J. Liu and F. Morgan, "Astrocyte to spiking 

neuron communication using Networks-on-Chip ring topology,” IEEE Symposium Series 

on Computational Intelligence (SSCI), Athens, 2016, pp. 1-8. (Contributes to Chapter 5). 

 

J. Liu, J. Harkin, L. McDaid, and G. Martin, “Hierarchical networks-on-chip interconnect 

for astrocyte-neuron network hardware,” ICANN 2016: Artificial Neural Networks and 

Machine Learning – ICANN 2016 pp 382-390, Lecture Notes in Computer Science  

 

 1.4.2 Journal Papers 

G. Martin, J. Harkin, L. J. McDaid, J. J. Wade and J. Liu, “On-chip communication for 

neuro-glia networks,” IET Computer Digital Techniques: Special Issue Bio-inspired 

Hardware and Evolvable Systems, vol. 12, no. 4, pp. 130-138, 2018. (Contributes to 

Chapter 6). 

 

J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, J. J. Wade and G. Martin, "Scalable 

Networks-on-Chip Interconnected Architecture for Astrocyte-Neuron Networks," in IEEE 

Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2290-2303, 

Dec. 2016.  
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 1.5 Summary of contributions 

Local Communication: This contribution is a low-level NoC interconnect based on a ring 

topology. This focused on the excitatory signal from an astrocyte, i.e. e-SP. This signal is 

a product of the astrocyte, which is connected to neurons within a neural network. The e-

SP is produced to provide an equilibrium across the synapse. It reinforces the PR on 

healthy synapses, which restores pre-fault firing activity in neurons. This work included 

an overview of H-NoC which was the existing SNN hardware used to stimulate the 

astrocyte by cloning packets and forwarding these packets to the astrocyte. The astrocyte 

then responded to the stimulus and produced 2-AG and subsequently e-SP. This e-SP is 

the excitatory signal which increases PR in a healthy synapse, this signal was 

communicated back to the astrocytes within the Node Facilities of H-NoC. The H-NoC 

paradigm is a scalable SNN, and using this existing framework it was possible to provide 

a scalable interconnect to communicate between an astrocyte and the SNN. The ring 

topology provided a scalable self-repair interconnect solution within a Neuro-glia network.  

 

The low-level communication paradigm between a network of astrocyte cells and an SNN 

is realised in this contribution using a ring-topology. This supports parallelism as it 

requires normal SNN activity whilst supporting low-level interactions between spiking 

neurons. This low-level communication from the astrocyte occurs between each astrocyte 

and the SNN network. Neurons communicate with a sequential and time-based method, 

whereas, astrocytes communicate continuously at a much slower rate. Astrocyte data is 

numerical in value and to retain the precision of computational models, the bit resolution 

is 64-bit. As the signal is large and the network is vast, this provides an interconnect 

problem and it is necessary to adapt the interconnect thereby making it suitable for 

applying to neuro-glia networks in hardware. This e-SP ring topology allows an astrocyte 

to communicate e-SP within an existing SNN and this interconnect provides a scalable 

solution for low level communication between an astrocyte and neurons within a neuro-

glia network. Within the astrocyte there is a lot of data exchanged at a less demanding 

throughput compared to that of spike events. In engineering terms, this slow continuous 

exchange of information can be exploited to save on area. This contribution also provided 

a solution for communication exchange between neurons and astrocytes at a local level 
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(inter-astrocyte) interchange using a NoC ring topology to exploit the slow changing 

communication in order to provide a low area interconnect capable of scaling for large 

scale networks. 

 

Global Communication: As well as communicating with neurons, astrocytes also 

communicate within networks of astrocytes via a global communication protocol. This 

communication protocol within the neuro-glia network can be considered a multi-level 

communication which supports both local and global communication exchanges. The 

global astrocyte-to-astrocyte interchange communicates IP3 data. Within an astrocyte, IP3 

oscillates and this causes a trigger to allow Ca2+ to be released. 

 

This process balances glia-transmitters across all associated and neighbouring 

astrocytes.  The network detects changes in IP3 and this is communicated across all 

connected astrocytes. As astrocytes influence and affect each other, it removes the need 

for a central controller. It is this distributed and complex communication which allows self-

repair on a global scale.  

 

The astrocyte receives stimulus from the SNN. This event data is communicated from H-

NoC to the astrocyte via an additional output port within the node router of H-NoC. The 

astrocyte model receives spikes from neurons which stimulate the release of 2-AG and 

the astrocyte produces the IP3, DSE and e-SP signals.  As IP3 is a global communication 

signal it is shared across its neighbouring astrocytes. Each astrocyte has a level of IP3 

and any changes in this IP3 indicates either increased or decreased levels. Astrocytes 

function by balancing and sharing their levels of IP3 to ensure that there is enough IP3 to 

facilitate repair and maintain normal functionality. This contribution is a multi-level solution 

for communicating signals (both local and global).  

 

The global signal from each astrocyte is connected to an astrocyte tile router. The 

astrocyte router has two main roles: (1) receive IP3 level data from up to eight astrocytes 

and, (2) calculate the average IP3 level for all eight astrocytes and communicate this back 

to all eight. The rate at which IP3 changes is much slower than spike events; typically 2-
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3 orders of magnitude slower. Therefore, this contribution provided a hardware 

interconnect focused on balancing the physical area per astrocyte tile router facility while 

also meeting real-time requirements of the IP3 exchange and update process. The 

astrocyte cluster facility is also an important component of the overall architecture of the 

astrocyte router. The ring topology in NoCs has previously shown benefits in area-speed 

trade-offs for area for both SNN and neuro-glia hardware. By exploiting the slower 

communication speeds of the biological IP3 signal a time-multiplexed approach using ring 

structures can reduce area and power overheads. This contribution provides a scalable 

solution for global communication exchanges in neuro-glia networks. 

 

Hardware Validation: The e-SP ring topology from contribution 1 is applied to a SANN. 

The astrocyte releases e-SP to strengthen PR and facilitates self-repair. When the e-SP 

strengthens the remaining healthy synapses the firing activity of the neuron is restored. 

The SANN is developed on an FPGA and consists of two neurons (Neuron #1 and #2), 

associated synapses and the astrocyte process. The neurons generate 2-AG which splits 

into two signals (e-SP and DSE). DSE goes to the astrocyte and reduces the PR on all 

synapses. The astrocyte then generates e-SP which increases PR on all synapses. The 

output spike from each neuron, is converted to an output frequency by a PWM and 

Neuron #2 controls the speed of the robot from this output frequency. Within this model 

there are no faulty synapses associated with Neuron 1, the faulty synapses are 

associated with Neuron 2. These are injected with faults during normal operation. The 

first to eighth synapses associated with Neuron 2 can have faults indicating the 

percentage of faulty synapses. When faults have been detected, the PR in associated 

synapses falls, and the e-SP rises. As the healthy synapses increase PR, the frequency 

of neuron #2 begins to recover to a pre-fault frequency.  

 

The SANN can be broken down into two neuron facilities, two synapse facilities and an 

astrocyte facility. While 64-bit precision has a large overhead, it is used so that the system 

output can be compared against the computer simulated models. The first step in realising 

the e-SP with large scale astrocyte-neuron networks is to work within a biological 

timescale and so, the ‘e-SP comms’ module was integrated into the SANN. The e-SP 
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data comes from the astrocyte and is used as input data to the synapse facilities. The e-

SP ring takes the e-SP output from the astrocyte and sends it to the associated synapses 

at each neuron. Results show that within the SANN with the e-SP ring in place, there is 

no deviation of results when compared to the SANN model hardware without the ring 

when additionally using the ring in hardware. The output frequency and the e-SP incurred 

overhead show quantifiable results directly affected by the e-SP ring within the SANN. 

These results show that although the ring focuses on a low-level serial communication 

protocol it is able to maintain accuracy compared to software models and similar accuracy 

when applied in hardware.  
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 Chapter 2: From biology to hardware 

 2.1 Introduction 

If a system is deployed to space and is unable to complete its mission due to a simple 

fault, it is a failed mission. In recent years, fault tolerance and self-repair have become a 

key research field especially in mission critical systems such as avionics and space 

applications, due to harsh environments [19].  Self-repair is a desired characteristic in 

such systems. This is because the device may repair its own faults, repairing or 

overcoming the fault or component, and returning to functional operation, or to some 

degree of acceptable performance. 

 

Recent research has shown that biological traits such as fine grained repair and 

distributed repair-decision making are performed in the brain via astrocyte networks [11], 

[12]. In particular, computational models of such repair have been successfully captured 

and applied to SNNs [15] where neuron activity can be repaired to near pre-fault operation 

via the re-strengthening of the neuron’s healthy synaptic connections. Since the repair 

occurs at the individual neuron synapses, this fault detection and repair is at a fine-grained 

level. The mechanism which makes the repair-decision within the brain has been 

identified as the astrocyte process, which is a type of glial cell highly distributed within 

networks of neurons [15]. This neuro–glia network paradigm addresses the key self-repair 

requirements of fine granularity and distributed decision making and sets the focus of this 

thesis.  One of the key challenges in progressing neuro–glia networks to hardware is 

connecting a network of astrocytes with an SNN. Astrocytes connect to groups of 

synapses and also form large networks of their own. Therefore, emulating a neuro–glia 

network in hardware introduces additional interconnect challenges which also requires 

maintaining a scalable, low power/area overhead implementation. This will support a 

more complete understanding of the human brain, and the information exchanges, as well 

as providing biologically inspired self-repair for electronic systems.  
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 2.2 Neural information processing 

The brain is mainly made up of neuron and glial cells where early studies suggested that 

the neurons were considered to the main functioning cell whilst glial cells solely provided 

structural integrity. More recent research however, has shed light on the inner 

mechanisms and complexity of the brain. It was perceived, and accepted, that an adult 

had approximately 100 billion neurons and 10 times as many glial cells, but, this figure is 

closer to 86 billion neurons [20]. Interestingly, a study identified on average, the number 

of cortical neurons in new-borns was similar to that of an adults however, the number of 

glial cells was found to be approximately one-fifth to one-sixth to that of an adults total 

number of glial cells [21]. With more and more research, we unlock secrets within the 

brain, yet there is so much to understand. There are between 6-10 neurons to one 

astrocyte according to recent research [13]. This is discussed in more detail in Chapter 

6. Section 6.2.1 Neurons and glia cells. 

 

The Human brain is highly efficient and has the ability to process information efficiently 

using around 12 Watts of power [22], [23]. 108 times faster than traditional computers [24] 

and highly adept at problem solving, pattern recognition and performing cognitive 

functions [25]. Traditional computers, although fast when carrying out sequential 

operations, struggle with pattern recognition and other complex problems (such as data 

processing and classification). They are inefficient in terms of computational power and 

power consumption. One such model, the blue brain project, using the IBM Blue Gene/L 

supercomputer has 8,192 CPUs running at a clock frequency of 700MHz and at peak 

performance, should provide 360 teraflops. This was published in 2006 [26], since then 

Blue Brain has been updated: Blue Brain 4 was released in 2014 and more recently Blue 

Brain 5 was released in 2018 (see section 2.4.1). Within the brain, it is the parallel 

infrastructure and the interconnect between neurons and how they communicate, which 

provides efficient and powerful processing.  
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 2.2.1 Neurons 

Beginning in the early 1900s, the structure of neurons within the brain began to be 

explored, Fig.2.1. Shows Santiago Ramón y Cajal drawing of very early depiction of a 

neuron. The neuron is the main cell responsible for communicating information [27] and 

is made up of several components: the soma, axon, dendrite and synapse. From a 

simplistic viewpoint, the dendrites are inputs and the axon is the neuron’s output (a neuron 

may have many inputs but only one output which branches out to many other neurons). 

Fig.2.2. Shows a synaptic cleft connecting an axon and dendrite, this is a chemical 

exchange between neurons. Fig.2.3. Depicts a more recent illustration of a neuron; 

labelling the neurons various components [28].  

  

Fig.2.1 A neuron by Ramon y Cajal [29]. 

 

 

Fig.2.2 Synaptic cleft [30]. 
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Fig.2.3 A closer look at the neuron. Here are the individual components of a neuron and 
connected to an astrocyte cell. 

 

To understand how a neural network processes information we must first look at these 

individual components and their operation during a spike event i.e. the communication 

protocol between neurons [27]. The neuron body is referred to as the soma. This soma 

is made up of positively and negatively charged ions, but sodium (Na+) and potassium 

(K+) are the most important in neural computation and communication. These channels 

were first identified in the nerves of a giant squid when Hodgkin and Huxley dissected a 

giant squids nerves and applied electrical current to observe and explore the nature of 

neurons and their communication channels [31]. Information from neighbouring neurons 

stimulate the soma. This information arrives from the dendrites and cause a chemical 

reaction to occur which then causes an electrical reaction.  

 

This reaction is caused as sodium channels open and the positively charged sodium ions 

flow through the membrane and into the soma, this is known as depolarization. The 

membrane potential has a voltage threshold (typically between -50 and -55 mV), as the 

neuron receives stimulus the membrane potential increases until it breaches the said 

threshold. This causes a spike or action potential (AP) to output through the axon to the 

synaptic cleft and into another neuron, i.e. a surge of glutamate across the synaptic cleft 
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[23], [32]. The axon is considered the output of the neuron and is connected to a dendrite 

via the synapse or synaptic cleft. Repolarization follows when the potassium channels 

open to allow potassium ions to leave the soma and restore membrane potential, this is 

the refractory period where the neuron is unable to fire again regardless of stimulus. 

Fig.2.4 is an action potential showing depolarisation and repolarisation. 

 

 

Fig.2.4 An AP/spike [33]. 

 

  2.3 Neural networks 

A typical neural network consists of artificial neural cells interconnected in a predefined 

topology with input and output layers and these layers consist of multiple inputs and 

outputs. The main aim of a neural network is to emulate an artificial system capable of 

complex problem solving and pattern recognition analogous to the brain, in a highly 

efficient parallel system. A neural network can be broken down into 3 main components: 

the I/O (input and output) layers, the interconnect or topology connecting neurons and the 

ability to learn.  Recreating the architecture of the brain in a neural network with the 

capability to learn, brings us closer to solving more complex problems. Neighbouring 

neurons communicate via spikes, as the number of input spikes accumulate, the stimulus 
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surpasses a predefined threshold causing the neural cell to fire i.e. releases a spike. This 

emulates the neurological process and therefore is analogous to the biological neurons 

and their communication protocols [27], [28]. Fig.2.5. shows a simplified overview of an 

ANN. In this case the input (Xn) is multiplied by the weight (Wn) of the synapse and the 

sum of the inputs is compared to an internal threshold (activation threshold). If the sum 

of the inputs passes the threshold value, the output is 1, if not it remains 0. 

 

 

Fig.2.5 Simplified overview of an ANN [34]. 

 

Neural networks can be regarded as having three generations, the first- and second-

generation models use rate coding, and these models were based on using the number 

of spikes to communicate. The McCulloch and Pitts model is considered the first 

generation of artificial neural network (ANN). The threshold for the firing rule (activation 

function) of the neuron is based on a step function. Neurons exchange information with 

neighbouring neurons and each input is multiplied by a weighted sum. If the sum of the 

vector surpasses the threshold, the neuron then fires a binary 1 or 0 [35].  

 

Donald Hebb (Hebbian theory), proposed an explanation for the adaptation of neurons in 

the brain during learning, "Cells that fire together wire together". This is unsupervised 

learning. The causal link between neurons is strengthened based on the firing activity i.e. 

the weights associated with each synapse were updated based on the firing activity of the 

neuron. Reinforcing the relationships between connected neurons, the network would 

adapt and learn based on activity [36].The second generation of ANNs, furthered the work 



19 

on neural networks by way of learning. In 1958, a Single Layer Perceptron (SLP) was 

introduced. This used supervised learning to update the weights associated with neurons. 

Supervised learning uses training examples to associate an input to an output based on 

a training set. The user supplies a training set, and an expected output, to train the 

network, and then supplies a completely new set. The supervised learning should allow 

the network to classify new data correctly. By modifying the synaptic weights and 

threshold function, it is possible to perform pattern recognition [37].  

 

Although the simplicity of using a SLP was a principal feature of such networks, they were 

unable to solve the basic XOR problem [38]. It was hypothesised, that introducing a 

hidden layer and devising a Multilayer perceptron (MLP) based on error back propagation, 

would solve the XOR problem. The trade-off of this approach was an increase in the 

complexity of the model, diminishing the simplicity of the SLP. A neural network may have 

a number of layers between the inputs and outputs, generally referred to as hidden layers. 

The number of layers depends on the classification or purpose of the network. An 

interesting aspect of the first and second generations of neural networks was that they 

focused on using the rate of spikes. However, this ignored the timing of the spikes 

completely. This leads us to the third generation of neural networks, a Spiking Neural 

Network (SNN). SNNs use the timing and frequency of their spikes to encode information. 

That is, they encode information based on the timing of spike events and/or rate coding. 

They communicate as such to neighbouring neurons, this is similar with how the brain 

processes information or data as spike events propagate from neuron to neuron [39], [40].  

 

 2.3.1 Spiking neural networks 

As mentioned previously, SNNs are based on sending information between neighbouring 

neurons using the timing and frequency of their spikes (temporal and rate coding) rather 

than using the spikes shape or size [41]–[43]. SNNs can be used to carry out more 

complex computations and they are a more accurate representation of how neurons 

communicate based on biological evidence. However, it has become increasingly difficult 

to simulate large scale SNNs because of limited scalability when realizing the complex 
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interconnect [44] and as such there is trade-off between complexity and biological 

plausibility [45]. There are several computational models based on using the timing of the 

spikes to encode information. Hodgkin and Huxley, based on the nerve cell of a giant 

squid, found that the nerves consisted of a membrane sheath consisting of sodium and 

potassium currents as well as a leak current, as seen in Fig.2.6 and thus produced an 

accurate mathematical model of a neuron. This is the Hodgkin–Huxley model of the 

characteristics of cell membranes [31].  

 

Fig.2.6 Hodgkin and Huxley model. This model uses voltage-gated (gn and gL) and leak 

channels to model the dynamics within a neuron [46].  

 

The Hodgkin and Huxley model has four differential equations and as a result, the 

mathematical model is computationally intensive due to the number of variables [23]. 

There have been attempts to recreate a similar model without the computational 

complexity but without reducing the accuracy. The Integrate and fire (IF) model based on 

the most basic concept of a biological neuron consists of a single capacitor which 

represents the charging capacity of a neuron. When current is injected, the capacitor will 

charge until it reaches a voltage threshold and then discharge. This can be viewed as 

analogous to a spike [42]. The Leaky integrate and fire (LIF) model, goes a step further 

and provides the model with a resistor which represents the leak current. Each time a 

spike activates current, the capacitor charges, the resistor then causes the capacitor to 

lose this charge if there is no further stimulation. This simple model is similar to that of a 

neuron, with no spikes or voltage input into the neuron model, the charge returns to 
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resting potential [23]. Although very simple approaches, they maintain the most important 

aspects of a neuron model, that is the charging and leaking aspect. Other examples of 

computational models based on SNNs include: Spike Response Model (SRM) [23], and 

Izhikevich [39], amongst others. Interestingly, the Izhikevich model is a biologically 

plausible mathematical model and is capable of reproducing all different firing patterns 

exhibited by cortical neurons. It consists of two differential equations and this model can 

give a realistic insight into cortical neurons interacting with one another [39]. 

 

Due to the number of computational SNN models available, it is difficult to distinguish an 

overall “best” model. There are a number of key differences and ultimately it becomes, 

biological plausibility vs computational complexity as seen in Fig.2.7. [45]. The choice and 

selection of a neuron model depends on the purpose of the model and the amount of 

computational resources available. If the purpose of a model is to identify neural dynamics 

or the behaviour of neurons and how they interact and communicate, a Hodgkin and 

Huxley (HH) [31] model or Izhikevich model [39] may be used but will result in a smaller 

scale network i.e. having smaller numbers of neurons but with greater complexity. If, 

however, the purpose is to view the interconnect strategies between neurons on a large 

scale, the biophysical complexity of the model is sacrificed in order to increase the number 

of neurons and have a larger network. Therefore, the computational resources available 

can be applied to other aspects of the network e.g. the number of neurons or identifying 

interconnect topologies. 
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Fig.2.7 Biological plausibility vs computational complexity [45]. 

 

 2.4 Neural networks: computational implementations 

There are many reasons to model and investigate how the brain processes information. 

It may give a much better understanding of how a parallel dense interconnect populated 

with neurons can lead to huge data processing abilities or how to harness such 

processing power of such a simple model with an efficient power consumption [23], [42]. 

Alternatively it could allow the exploration of degenerative diseases that plague the brain 

such as epilepsy, Alzheimer’s and Parkinson’s [47]. Using models for more efficient 

processing systems capable of big data, speech recognition and pattern recognition, will 

lead to better systems in the future in terms of research within medicine [48]. It could also 

give us insight into other cells at work within the brain, as it has done with astrocytes [49].  

 

 2.4.1 Neural networks in software 

Software applications offer researchers the flexibility of choosing complex or simplified 

models based on the nature of the research. It allows customisation throughout the 

network from start to finish, meaning the network can be specifically applied for certain 

problem solving or classifying purposes. Software models are also very useful for 
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investigating more complex neural networks and how neurons communicate in different 

parts of the brain e.g. the neocortex  [45], and neuron models help explore the behaviour 

of neurons more closely. The biggest drawback of using software models is the 

processing power. The power required to explore and develop these models, is not 

always available off-the-shelf. In terms of software, modelling NNs suffers due to the 

hardware bottleneck used to create and run applications. This is due to sequential 

processors unable to execute parallel networks efficiently, this leads to an inefficient and 

power hungry processing [50]. There are two main platforms for realising neural networks 

in software using traditional processing units, general purpose Graphic Processor Units 

(GPU) and High-Performance Computers (HPC) [51]. A hybrid approach may also be 

considered using CPUs with specific NN hardware in order to accelerate the neural 

network applications [52]. In recent years, processing power and performance has 

increased significantly. The off-the-shelf Intel i9-7980XE  18-core, 36-thread CPU, clock 

speeds vary from 4.2GHz to 3.9GHz up to 12 cores, is due to be released Fall 2018 [53]. 

It would seem that the resources for neural networks on traditional CPU architectures 

may not be far away however, GPUs consist of more processing cores and dedicated 

processors to that of general-purpose CPUs. Graphics processing units, typically 

containing a lot more cores which makes them more suitable for realising the parallelism 

of neural networks than CPUs, and examples of such software simulations have been 

used in the past [54], [55]. General-purpose computing components aren’t sufficient and 

are very limited in regard to simulating neural networks. These vast neural networks 

consist of only hundreds of thousands of neurons and synaptic connections, which would 

allow a very small-scale realisation. NeMo used a general purpose GPU to simulate one 

million neurons, with 1000 synapses each, firing at 10 Hz [54]. A GPU out-performs a 

CPU, but they are still inefficient and power hungry as well as slow [50]. It is the 

parallelism that researchers struggle to re-create. NCS6 was able to simulate one million 

cells and 100 million synapses by distributing data across eight machines with each 

having two video cards [56]. A CPU cluster e.g. Beowulf cluster which is a network of 

computers [57], similarly, GPUs can exploit their cores for parallelism, which can be used 

in realising NN models [57]. 
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HPCs allow the realisations of large-scale neural networks with flexibility in terms of 

programming and creating networks, in [57] a computational model of the thalamocortical 

system was simulated on a Beowulf cluster. This simulation comprised of one million 

neurons and half a billion synapses. In computational terms, there were sixty 3 GHz 

processers, each with 1.5 GB of RAM yet, could not match real-time performance of 

biological systems. They aim to allow the user to modify the number of neurons, the 

number of hidden layers and the parallel interconnect. 

 

HPCs can be used for deep learning, and are made up of combining GPUs, however, 

they have limitations such as scalability. In [58] a HPC capable of training one billion 

parameter networks was described but encountered scaling problems when trying to 

exploit parallelism across multiple GPUs. In [59] a Titan supercomputer was used in order 

to optimize the performance of deep learning algorithms. As the size of the network grows, 

the hyper-parameter space grows increasingly larger. Other such HPC approaches look 

to accelerate training using HPCs e.g. Caffe-HPC aims to train large models [60] using a 

HPC approach. So although HPCs can be applied to reduce certain aspects such as 

training times or accelerate models, they are limited. 

 

With increasing numbers of neurons and additional complexity, the software simulations 

become more difficult to simulate and realise. As a result, this uses more computational 

resources available [26]. HPCs contain huge reservoirs of computational resources, 

allowing increasingly complex neural networks, but they are slow and do not scale 

efficiently when realising large scale SNNs [61]. Computational models have proven very 

effective at pattern recognition (speech and facial recognition), classifying biological 

information using neural networks [48]. SNNs have been emulated in software with the 

aim of creating a highly parallel implementation for acceleration purposes [8], [62], [63] 

and also as exploratory platforms [64], [65]. The BlueBrain project [26] is an example of 

a software implementation using a HPC.  

 

The Blue Brain 4 and Blue Brain 5 are installed at the Swiss National Supercomputer 

Centre (CSCS). Blue Brain 4 aimed to simulate a rodent’s brain (200 million neurons).The 
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Blue Brain 4  comprised of a four-rack IBM BlueGene/Q system 65,536 cores for 

computing, providing a peak performance of 839 Tera Flops [66]. The Blue Brain 5 core 

system is an HPE SGI 8600 system comprised of 372 compute nodes, providing 1.06 

petaflops of peak performance. [67].  

 

Software approaches are flexible due to the software control but exhibits significant 

physical space, cost and power overheads. In regards to software, the key challenge for 

implementing SNN software models on typical processing hardware is scalability.  This 

stems from the need for efficient interconnect wiring, low area/power synapse and neuron 

designs, efficient weight storage, programmability of SNN topology and weights. It is the 

inability to do this without huge amounts of computational resources that make it very 

difficult to make an efficient neural network in software which can perform simulations in 

close to biological real time.  

 

 2.4.2 Neural networks in firmware 

It is natural to progress to a hardware platform as a solution to the software approach’s 

short-comings; researchers considered using Field Programmable Gate Arrays (FPGAs) 

[68], [69].  

 

FPGAs provide a solution to the inherent problems of using software i.e. the hardware 

bottlenecks. Simulating large scale neural networks on a hardware platform, removes the 

limited CPU and GPU overheads as FPGAs are more efficient in terms of both hardware 

overhead and power consumption. FPGAs were initially used to realize large hardware 

integrated circuit (IC) designs. They offer a more flexible approach similar to that of 

software, but with the efficiency and performance of a full hardware design, with low 

overheads. FPGAs are made up of two-dimensional arrays of configurable digital logic 

blocks and registers. The FPGA interconnect, which connects blocks and registers is also 

reconfigurable between these blocks. Very High-Speed Integrated Circuit Hardware 

Description Language (VHDL) and Verilog are hardware description languages and are 

used to describe and program FPGAs. This allows the re-configuration of the FPGA 

(flexibility). Designs can be implemented on FPGAs quickly as there is no physical 
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process. Because of the parallel nature of FPGAs and how they operate they have 

become a popular choice when realizing neural networks  [8], [50], [70], [71]. The reason 

FPGA platforms are preferred to software approaches is because they offer a low power 

and parallel infrastructure which is suitable to support large scale neural networks. 

FPGA’s will be discussed in more depth in the next chapter. 

 

 2.4.3 Neural networks in ICs 

A fully customized hardware design e.g. Application specific Integrated Chip (ASIC) 

provides an ideal scenario for neural networks. It provides a low area and power efficient 

interconnect with a large throughput. However, as modelling the size of the network 

scales, the traditional network interconnect struggles to deal with increasing numbers of 

neurons within the network. This is due to using bus systems for interconnecting PEs. 

Each neuron is considered to be an individual PE and thus, as the number of neurons 

increases, the number of PEs connected to the interconnect increases. This also 

increases latency and slows the throughput. Therefore, an IC design is not fully scalable 

using traditional digital interconnects because the bottleneck is the hardware 

interconnect. The topology of connected neurons is especially important in terms of how 

neurons are connected within a network, increasing complexity as well as increasing 

latency. This will affect the speed and performance of the full custom IC design. 

Neuromorphic ASICs have been designed to replicate the low power and area of the brain 

onto a chip. The Defence Advanced Research Projects Agency (DARPA)-funded 

program Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE), 

aims to develop a full-custom hardware design for neural network implementations that 

scale to biological levels [72].  

 

The SyNAPSE program develops TrueNorth neuromorphic chips and attempts to emulate 

the mammalian brain in electronic hardware. The overall aim is to build a microprocessor 

system that emulates the mammalian brain in terms of both function and power 

consumption (10 billion neurons, 100 trillion synapses consuming just one kilowatt [72]). 

As of 2014 there were 4,096 neurosynaptic chips capable of 1 million programmable 

neurons and 256 million programmable synapses, consuming just 4 kW of power. This 



27 

neurosynaptic chip is considered low power as it differentiates from traditional von 

Neumann architecture. It operates without a clock and has a low power consumption by 

optimizing event-driven operations, and therefore, it operates only when it needs to. A 

number of simulations and applications have been carried out by IBM and Darpa to 

recreate the efficiency and processing power of the mammalian brain. IBM used a super 

computer, the Dawn Blue Gene/P with 147,456 CPUs, to create a network similar in size 

to that of a cats neocortex [73]. Further research was released creating Compass [74] a 

large scale simulator for cognitive computing a follow up showed the ability to simulate 

2.084 billion neurosynaptic cores containing 53 × 1010 neurons and 1.37 × 1014 

synapses [75], as well as other applications which demonstrate the use of the 

neurosynaptic core [76].  

 

TrueNorth [77] was created by IBM and is used on the DARPA SyNAPSE board, there 

are 16 TrueNorth chips. Each of the chip’s 4,096 neurosynaptic cores includes the entire 

computing package: memory, computation, and communication. Fig.2.8 shows an 

infographic on TrueNorth released by IBM. 

 

 

 

Fig.2.8 IBM infographic on TrueNorth [72]. 
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 2.4.4 Neural network hardware using on-chip interconnect 

Significant progress has been made in synapse and neuron designs, programmability etc. 

Interconnect scalability remains a challenge which is still not fully addressed. Current 

approaches to this problem have explored networking concepts such as NoC. NoC 

technology applies network engineering and techniques for on-chip communication. This 

has notable improvements over conventional bus and crossbar interconnections. NoC 

improves the scalability, and the power efficiency of System on Chip (SoC) technologies. 

The next chapter will provide more insight into such technologies. Using dedicated 

hardware and digital interconnects, the speed and rate at which neural networks work 

has been increased. In terms of neuromorphic hardware the key research includes the 

following:  

 

 Spiking Neural Network Architecture (SpiNNaker) [64] uses 18 ARM9 

processors where 16 processors are used for simulating 1,000 neurons each. It 

uses a NoC packet switched interconnect and two NoC networks, and aims to 

simulate biological real time, large scale SNN consisting of a billion neurons and 

trillion synapses. The aim of SpiNNaker is to simulate up to a billion neurons in 

biological real time. 

 Neurogrid [21] is a neuromorphic system (using analogue sensors and a digital 

interconnect) which simulates a neural system in biological real time. Neurogrid 

uses 16 neurocores (each neurocore simulates 65,536 analogue neurons) and 

aims to emulate 1 million neurons in real time with a low power overhead (3 watt) 

and connects neurocores using a NoC interconnect. Since it only uses 16 

neurocores, it can simulate a million neurons and billions of synaptic connections 

in real time, with a low power consumption. Neurogrid uses software for interactive 

visualisation and hardware for real time simulation. Neurogrid, however, lacks 

software flexibility shown by High-Performance Computing (HPC) approaches and 

due to the limited number of neurons per layer, it is unable to offer biological real 

time [78].  
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 FACETS [62] is designed to use an uncut silicon wafer for communication between 

cores. The wafer consists of many High Input Count Analog Neural Network 

(HICANN) chips and rather than cut the wafer, a multi-bus NoC interconnect is 

integrated onto the wafer for communication between chips on the wafer. An FPGA 

provides wafer to wafer communication, although this limits performance. A single 

wafer can contain 384 HICANN chips which equates to 196,608 Neurons. FACETS 

offers hardware acceleration although the trade-off is a high consumption of power.  

 

 Emulating Biologically-Inspired Architecture in Hardware (EMBRACE) [8], 

[63] was developed at Ulster University and uses analogue neurons with a NoC 

interconnect. EMBRACE offers a Field Programmable SNN solution which is 

reconfigurable, and due to the NoC architecture, it is also scalable with low 

power/area consumption. The Hierarchical Networks on Chip (H-NOC) 

Architecture, is an extension of EMBRACE, and focuses on the structure of the 

neurons and how the neurons communicate. It uses three communication layers 

with three separate routers on a single Cluster facility for communication. Fig.2.9 

shows an overview of the H-NoC and how neurons are connected with a 

hierarchical router structure, this enables 400 neurons to interconnect whilst 

allowing communication on a global scale (many Cluster facilities). H-NoC also 

offers a spike compression technique [79], which reduces traffic congestion while 

maintaining biological real time. In addition H-NoC offers hardware acceleration 

where its NoC throughput performance outperforms that of SpiNNaker, Neurogrid 

and FACETs [79]. Fig.2.10. shows the H-NoC architecture interacting with an 

astrocyte network. 

 

 SyNAPSE and TrueNorth [77]. TrueNorth is a neuromorphic CMOS integrated 

circuit chip. Memory, computation, and communication are handled in each of the 

4,096 cores. In essence this is a highly parallel architecture intended to mimic 

neurons in the brain, however, they are updated serially. TrueNorth consumes 70 

milliwatts (0.001% compared to traditional microprocessors) this is because the 

SyNAPSE chip only draws power for the computation of any calculations. 
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Fig.2.9 H-NoC Architecture: This Figure shows the hierarchical approach of H-NoC. The 

outcome is high throughput or increased spike communication across significant numbers 

of synapse and neurons [79]. 

...

...

...
Neuron facilities

Neuron cells

Astrocyte cells

    Neuron cells

Neuron facility #1 Astrocyte cell #1

Interconnect architecture 

for the astrocyte network

(a). Spiking neuron network               (b). Astrocyte network

Tile facility #1

 

Fig.2.10 H-NoC/Astrocyte Architecture. This figure shows H-NoC connected to an 

astrocyte network: This Figure shows the hierarchical approach of H-NoC connecting 

neurons to astrocytes via the tile router. 
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H-NoC and FACETS are able to offer acceleration beyond that of biological real time. 

This shows the promising features of using hardware for a SNN and is therefore a natural 

progression from software. Fig.2.9. shows the H-NoC architecture. Fig.2.10. shows the 

H-NoC architecture interacting with an astrocyte network. A 3-D structure of 

interconnecting neurons and synapses captured in a flat 2-D NoC. This enables higher 

levels of flexibility for routing packets of data (spike events) to synapses and neurons.  

 

 2.5 Astrocytes and self-repair 

A novel self-repairing strategy using astrocytes is based on recent biological evidence 

[12], [15], [80]. It was previously believed that astrocytes were not involved in neuron 

activity and were used solely for structure, however recent research shows that astrocytes 

are involved in regulating synaptic plasticity [14] and the self-repair process of the brain 

[11]. Astrocytes don’t communicate in the same manner as neurons (spike events). 

Astrocytes communicate with neurons and other astrocytes using different chemical 

signalling pathways. Astrocytes communicate bi-directionally with neurons and other 

astrocytes by the uptake and release of transmitters, and because of this they modulate 

synaptic transmission [80]. Astrocytes contain receptors which are activated when a spike 

event or AP occurs. This triggers the release of glutamate from the presynaptic axon into 

the cleft and into the postsynaptic dendrite. When the postsynaptic neuron has been 

sufficiently depolarized, causing the neuron to emit a spike. 2-arachidonyl glycerol (2-AG) 

is released from the postsynaptic neuron. This is taken up by the astrocyte, and causes 

oscillations of calcium (Ca2+) within the astrocyte. This in turn causes the release of 

glutamate or gliotransmitters; this is an indirect feedback mechanism from the astrocyte 

to the neuron(s) and is the mechanism which allows the astrocyte to communicate with 

the neuron. There are two feedback signalling pathways, the indirect feedback via the 

astrocyte and the direct feedback via the neuron. This feedback mechanism is referred 

to as Endocannabinoid-mediated Synaptic Potentiation (e-SP) which strengthens PR. 

The second feedback mechanism is the direct feedback referred to as Depolarization-

induced Suppression of Excitation (DSE). DSE subsequently decreases the PR of the 

synapse. Moreover, astrocytes are connected via intracellular signalling routes via gap 

junctions. This allows Inositol trisphosphate (IP3), which is an astrocyte secondary 
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messenger, to pass through thereby allowing astrocytes to communicate with and share 

information. This signalling behaviour has been modelled in previous work [81] and is the 

mechanism by which repair decisions are communicated at network level.  

 

 2.5.1 Example computational models of repair 

The implementation of astrocytes within an SNN has recently been explored, and  a 

software model [15] developed by Ulster University indicated that the use of astrocytes 

facilitates self-repair. Five astrocytes were interconnected in a ring fashion and each 

astrocyte connected to two neurons. Up to 80% of the neural synapses were made faulty 

during the simulation and results indicate that even with severe damage, the astrocyte 

model could return firing rates of damaged neurons to near pre-fault level [15]. This 

network level repair was based on the strengthening of PR on healthy synapses which 

caused the neurons to regain frequency output. Fig.2.11, illustrates two neurons firing, 

when one neuron stops, the excitatory signal provided by the astrocyte (e-SP) is 

maintained by the healthy neuron. 

 

Fig.2.11 Astrocyte feedback: N1 and N2 depict neurons, A1 an astrocyte and C1 and C2 

contain approximately ten synapses each. The signals e-SP and DSE are excitatory and 

suppressive feedback signals. In (A) both neurons are firing however in (B) N2 has 

stopped firing. Although DSE from N2 has stopped, the astrocyte e-SP feedback is still 

active due to N1 still remaining active. This leads to an increase in PR and weights within 

the remaining healthy synapses (C2) of N2 and a restoration of N2 firing activity [15]. 
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Computational models of such repair have been successfully captured and applied to 

SNNs to demonstrate repair of neuron firing activity [15]. For example, when an active 

neuron suddenly stops firing it is deemed faulty, this is due to a low PR at its associated 

synaptic sites. These faulty neurons are referred to as silent or near silent neurons. Work 

has shown that astrocytes can detect faulty synapses (fine-grained level) associated with 

silent neurons, and by subsequently increasing the PR on surrounding healthy synapses 

they can restore the neuron to its original functionality i.e. the potentiation of PR on 

healthy synapses will restore pre-fault function.  

 

By increasing the PR in the remaining healthy synapses, the neuron functionality is 

restored to its pre-fault level of activity. The increased complexity of the signalling 

between the astrocyte, synapses and neurons provides the capability to sense and repair 

synaptic connections (fine grained). The astrocyte regulates the degree of repair. It should 

be noted that astrocytes communicate globally with other astrocytes thereby providing a 

distributed repair-decision making capability. At an abstract level, one can view astrocytes 

as a network and the synapses and neuron as a separate network, with interactions 

between both networks occurring via the direct and indirect signalling pathways. Progress 

has been made in modelling the astrocyte process [81] and its interactions with SNNs  

[15] successfully in software models. The software is limited by the computational 

resources and the length of time it takes to compute simulations. SNNs have also been 

replicated using hardware and the level of parallelism exhibited by hardware has shown 

to improve performance over software models with a lower power and area overhead at 

a much lower cost. It is therefore, timely to explore hardware emulation as hardware 

models are now more readily available, thus it is possible to employ self-repair on a SNN. 

 

 2.6 Astrocytes in hardware 

Hardware models of astrocytes have been developed in attempts to replicate the 

astrocyte functionality. Nazari et al. 2014 [82] emulates astrocyte signalling for 

communication using an analogue implementation of astrocytes. Introducing oscillators 

to simulate Ca2+ oscillations, they simulate communication between astrocytes, but there 

was no exploration of self-repair. Solemani et al. 2015 [83] introduces a digital 
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implementation of astrocytes, based on FPGAs. The neuron and astrocyte 

communication is recognized and this is seen as a platform for developing a feedback 

loop which is similar to that in the brain. When a neuron fires, the astrocyte releases 

waves of calcium this is used to modulate synaptic strength. Using a ratio of 1:1 the 

neurons are directly interfaced with a digital astrocyte feedback loop, which can modulate 

synaptic strength. This is the first step in digitally implemented astrocytes, however the 

approach is not scalable and has no repairing function. Using astrocytes for self-repair is 

a promising field of research and the work done on software modelling has been 

successful [15] and forms the basis of this PhD research. The intertwining of two very 

different networks (SNN and astrocyte networks) presents an interconnect challenge and 

using NoC strategies is a potential solution to this particular problem. Fig.2.12 shows how 

astrocytes interact with a neural network. N1 to N8 are neurons. There are two astrocytes 

which may have hundreds or thousands of connections to neurons.  

N3

N2

N1

N6

N5

N4

N8

N7

Input Layer

Hidden Layer

Output Layer

HL 

Astrocyte

OL 
Astrocyte

Process 1

Process 3

Process 2

15 Hz

25 Hz

35 Hz

45 Hz  

Fig.2.12 SNN with Neurons and Astrocytes [84]. 

 

The Self-repairing spiking neural network (SPANNER) architecture, developed at Ulster 

University, presents a self-repairing mechanism using astrocyte to neuron communication 

in hardware. Two neurons are connected and the synapses are connected to an 
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astrocyte. The two neurons have direct and indirect feedback signals, i.e. e-SP and 2-AG 

(DSE) and acts as an equilibrium stabilizing the PR at each synapse connected to the 

neuron and enable a stable firing rate. The self-repair capability in this process is 

monitored by the astrocyte process. When a fault occurs at the synapse associated with 

a neuron, both the e-SP and 2-AG (DSE) for that one synapse stop. The e-SP is a global 

signal which is associated with all synapses, therefore, when both signals cease, this 

creates an imbalance in PR at the healthy synapses. The e-Sp in the healthy synapses 

increases and thus the PR increases to restore the firing rate of the neuron. This self-

repair therefore allows detection of faults in synapses and the repair of the neuron 

functionality occurs due to the healthy synapses increasing their PR. The SPANNER 

hardware architecture emulates the self-repairing mechanism of the brain. The results 

from SPANNER demonstrated a system with self-detection and repair capabilities and 

this has been applied in hardware. 

 

Fig.2.13 and Fig.2.14 show a network with no faults and a network with faults respectively, 

in both, neuron 1 is indicated in blue and neuron 2 is indicated in red. This is to show that 

under normal operations both neurons are functional and have similar firing rates, e-SP 

and DSE. In Fig.2.14, 80% of faults have been injected into the network in neuron 2’s 

synapses, at 200ms the faults are injected and the neuron firing frequency rate drops. 

The PR at the first synapse drops and at the tenth synapse the astrocyte increases the 

PR i.e. the healthy synapses increase the PR and even after a catastrophic (80%) fault, 

the frequency at which the neuron fires is close to pre-fault levels [85]. 
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Fig.2.13 SPANNER repair mechanism no fault [85]. Neuron 1 is indicated in blue and 

neuron 2 is indicated in red, respectively. The figure shows the excitatory (e-SP) and 

inhibitory (DSE) signals under normal circumstances with no fault. This shows how the 

astrocyte signals can balance the PR and the frequency of the neurons. 
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Fig.2.14 SPANNER repair mechanism with faults [85]. Neuron 1 is indicated in blue and 

neuron 2 is indicated in red, respectively. The figure shows the excitatory (e-SP) and 

inhibitory (DSE) signals under fault induced circumstances with 80% faulty synapses. The 

fault is injected at 200 seconds as this allows the signals to naturally balance before faults 

are induced. 

Using this self-repair mechanism Ulster University applied the principles to a mobile 

robotic car using astrocyte-neuron networks [86]. This applied neural networks and self-

repair capabilities to real world systems. The robot car consists of three main 

components: a spiking astrocyte-neuron network (SANN) implemented on an FPGA and 

a robotic wheel module. This is the controlling module for the robot car. A mobile robot 

car wheel hardware module and an FPGA hardware module which reads signal data and 

presents to monitoring software on a PC, the three modules are labelled (a), (b) and (c) 

respectively, these module and robot are shown in Fig.2.15. 
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Fig.2.15 Mobile Car controlled by an FPGA based SANN [86]. 

 

The SANN is implemented on an FPGA hardware platform In previous work [85], the 

network consists of two neurons and one astrocyte and each neuron has several 

synapses associated. The neuron facility, which is neuron A and neuron B, are based on 

the LIF neuron model and is used to drive the car motors from two inputs, derived from 

neurons A and B respectively. As the neurons fire at a constant frequency rate the car 

moves forward, faults are then simulated within this neural network by setting the PR 

value at each synapse to a value of 0.1. Even with a catastrophic failure rate, 80%, the 

astrocyte facilitates self-repair. This is based on  the global e-Sp signal increasing the PR 

of the healthy synapses and therefore the SANN can restore functionality [86]. 

 

SANNs have demonstrated the capability of self-repair and is representative of how the 

brain repairs. The vast number of neurons and astrocytes within this network introduces 

multiple computational paradigm problems. Neurons communicate with neurons, 

astrocytes to neurons, and astrocytes to astrocytes. Each using different communication 

protocols and patterns. It is difficult to realize this network in hardware using traditional 

interconnect mechanisms. Hierarchical astrocyte network architecture (HANA) [87] is an 

interconnect based on a hierarchical NoC interconnect to support the information 

exchanges between astrocyte cells within a neuro-glia network of neuron and astrocyte 
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cells. HANA is a two-layer interconnection structure which supports astrocytes and 

astrocyte tile facilities. This hierarchical interconnect consists of astrocyte tile facilities to 

allow the exchange of IP3 (the signal used to communicate between astrocytes) between 

astrocyte cells. HANA focuses on astrocyte to astrocyte communication with no astrocyte 

to neuron communication. The main objective was balancing local and global traffic on 

the Astrocyte NoC using a two-tiered network and separate local and global 

communications. Analysis shows that the area overhead could be reduced however, as 

it focused on the hierarchy and the communication protocols the area efficiency wasn’t 

the priority. 

 

The communication protocol employs a ring topology, a token technique and a packet 

priority scheduling mechanism, this balances the local and global astrocyte network traffic 

within the network. The astrocytes connect directly to neurons and each astrocyte is 

connected to an astrocyte hub in a ring. The astrocyte hub is connected to a second level 

router, this is the astrocyte tile router. Therefore, the two levels of communication local 

and global are maintained within the two dimensional hierarchy of routers. Each astrocyte 

communicates within the ring for local astrocyte connectivity, and the astrocyte tile 

facilities connect in a mesh fashion to support global astrocyte communication. This also 

maintains the ability to scale the network with increasing numbers of neurons and 

astrocytes. It is important to note, each astrocyte tile facility consists of ten astrocyte cells, 

and each astrocyte cell connects directly to ten neurons, thus one astrocyte tile facility 

can accommodate ten astrocyte cells and one hundred neuron cells.  

 

 2.7 Challenges 

Implementation of a neuro-glia network has several difficult challenges to overcome. It is 

a challenge to provide scalable interconnect, between the neural network and astrocyte 

network. Astrocytes connect to other astrocytes and neurons, they also communicate 

using different protocols and time scales at which information is passed between cells 

(both neuron and astrocyte cells).  

There are 3 main challenges: 
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1. A Vast number of connections: Neural networks, have a huge number of 

connections. If we can assume that in a neural network, the number of neurons to 

synapses is N2, this is the number of neurons have N2 connections. With the 

addition of m astrocytes the number of connections will become N2 x m. As the 

network scales the number of connections grows at an exponential rate. 

2. How information is exchanged: Binary events vs continuous numerical exchanges 

of information. Spike events are quick and basic, a 1 or a 0. Within astrocyte 

networks, there is a continuous exchange of calcium, this happens over a longer 

period of time as calcium waves oscillate. This is completely different and as of 

now, there have been few attempts to recreate this information exchange. 

3. Timescale: Due to how astrocytes exchange information, the timescale of 

communication in each network is different. Spikes can be exchanged using clock 

speeds 1 Hz to 100kHz. This is easy to attach to spike rates on boards, this means 

that the rate of spikes can be accelerated. On a biological timescale, astrocytes 

communicate in the scale of seconds, this is very slow in comparison. 

 

There are small positives to be gained from these dynamics. The biological timescale 

allows a slower timescale reducing the need for huge throughput. This allows room for a 

trade-off between throughput and area. Nevertheless, there are large and difficult 

challenges when implementing a neuro-glia network and providing a communication 

infrastructure between astrocytes and neurons allows a trade-off between parallel and 

serial communication. 

 

 2.8 Summary 

This chapter has provided a review of current methods of fault tolerance and self-repair 

as well as a review of self-repair in biology. This chapter reviews current SNN hardware 

and how NoCs have provided a solution for the current network constraints of SNNS, this 

is they are inherently vast, as there are a huge number of connections between neurons 

within a network. NoCs have been implemented successfully in current SNNs to allow 

connectivity and high throughput which the SNN needs and now the digital interconnect 
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is a standard solution to connecting many PEs on a chip it is also a standardised solution 

for PEs or neurons, in a SNN.  

 

Current fault tolerance methods come at the expense of a large area overhead and 

require reserves of spare parts. They rely solely on redundancy and spare cells to 

facilitate self-repair, this also increases complexity, in terms of reconfiguring the spare 

cells. As an alternative solution, SNNs have turned to the brain. Within the brain astrocyte 

cells facilitate self-repair, the aim of this biological self-repair is to of implement this self-

repair process in a Neuro-glia network, that is, a network made up of both neurons and 

astrocyte cells, which aims to emulate a closer realisation of how the brain works. The 

aim of this is to emulate self-repair within hardware, building on an existing SNN 

application, to increase the lifespan of current SNNs, creating a more biologically accurate 

and plausible hardware SNN, similar to that of the brain, without downfalls current 

approaches such as TMR would incur such as a huge area overhead or imposing on the 

SNN application. The need for such a self-repair approach would allow an astrocyte 

network to work in parallel with a SNN such as H-NoC, creating a neuro-glia network and 

providing this SNN with a method of fault tolerance without huge power/area constraints.  

 

However, there is a significant interconnect problem; as the network scales, the number 

of PEs increases and thus, the number of connections increases exponentially, this is 

therefore, not scalable. Using NoCs to provide a scalable interconnect, may be the 

solution to realizing this vast number of connections.  As computational models of repair 

have been successful it is therefore timely, and the next step in developing and realizing 

these networks in hardware. It is necessary to explore and develop a SNN with self-repair, 

using non-traditional methods (buses and wires) to create an interconnect with low 

overheads. Such an approach is discussed in Chapter 3. 
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 Chapter 3: Networks-on-Chip: an innovative solution 

 3.1 Introduction 

In terms of System on Chip (SoC) and Multi-Processor System on Chip (MPSoC) 

architectures, typical interconnect strategies (wires and buses) are unable to support high 

performance i.e. the high throughput and high connection demands due to complexity 

and  [17]. Therefore, the bottleneck of said traditional interconnect strategies are a 

network paradigm where performance and throughput is important, e.g. a typical system 

bus is good for commercial CPUs but does not scale very well. Fig.3.1 is a typical bus 

interconnect. With the increasing numbers of processing elements (PE’s) in MPSoC 

architectures and the vast number of connections between these PE’s, latency grows 

exponentially with each new PE as does complexity. The Network-on-Chip paradigm has 

become a revolutionary step in terms of developing interconnects based on computing 

networking protocols and is a promising solution for large dense parallel structures i.e. 

with the aim to create neural networks where networks consist of 1011 neurons and 1014 

synapses are connected in parallel. Traditional bus systems are not fast enough and too 

complex. Recent examples of NNs using an NoC interconnect have been mentioned in 

the previous chapter, SpiNNaker [64], Neurogrid [65] and H-NoC [79] and again used in 

the current SANN at Ulster [85], [87].  

 

 

 

Fig.3.1 A typical system bus [72]. 
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Networks-on-Chip (NoCs) has emerged as a standard approach in order to connect many 

cores on a single chip, over traditional approaches of using wires, buses and crossbars 

[16]–[18]. The NoC interconnect is inspired by computer networking, where a large 

network of computers connect together using routers and packets of information used to 

communicate data successfully in vast networks of PEs. Based on the same principles, 

connecting PEs via routers and packets, provides a scalable hardware connection 

mechanism with a low area/power overhead. Thus, it is timely to explore NoC technology 

as a solution to connect a large quantity of elements within a neuro-glia network. The 

NoC interconnect strategy provides a communication mechanism based on the 

packetization of information and the use of routers to provide a scalable, low power/ area 

solution. There are a number of aspects regarding the development of NoC interconnect, 

including the topology which refers to the physical layout of PEs within the interconnect, 

adaptive routing scheme and router microarchitecture. Firstly, NoC network consists of 

PEs or cores, these are then connected to network adapters, routers and links to route 

and send information throughout the network. Each PE or core is attached to a network 

adapter which is the physical link between PE and router, routers are connected in a 

predefined topology, selected based on performance, i.e. throughput or path diversity, 

and the router sends this information through physical links in the network. Fig.3.2 shows 

a typical NoC topology, connected in a mesh fashion, and shows how the routers 

connected to PE’s are connected within the NoC. 

 

Fig.3.2 A typical mesh NoC infrastructure. 
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NoC is considered as a suitable solution to the interconnect problem within SoCs [16]–

[18]. It is the manner in which the neurons are connected within the network which 

provides the low power and area solution, which is scalable and allows vast number of 

neurons to be connected within said network. An SNN can be viewed as analogous to a 

NoC interconnect, the neurons can be viewed as PEs, the links as synapses and the 

topology as the dense interconnect within the mammalian brain. NoCs have provided 

highly scalable, low power/area interconnects for SNNs [71]. A neuro glia network 

consists of more than one single type of neural cell, as it consists of many glial cells 

including astrocyte cells. Astrocytes, as previously mentioned in chapter 2, mediate 

information exchanges between neurons within the brain. They also exchange 

information with other astrocytes, creating a network within a network. The astrocytes 

provide an additional interconnect problem, as there are now two networks, consisting of 

very different communication protocols, working in parallel. H-NoC and NoC technology 

provides the foundation on which to build a low power/area and scalable interconnect 

capable of connecting the many astrocytes within a network of neurons. This will then 

provide a platform on which self-repair may be realized within SNN in hardware. 

 

This chapter provides the following:  

 

1. The advantages of using NoC as an interconnect for a neuro glia network.  

 

2. The basic components required within a NoC interconnect e.g. router 

microarchitecture, topologies and routing algorithms. 

 

3. A literature review detailing current large scale NoC implementations and those 

used in current brain-inspired paradigms. 

 

4. The advantages of using NoC technology to provide a suitable interconnect for 

neuro-glia networks. 
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 3.2 NoC interconnect advantages 

NoC technology provides a suitable interconnect solution to networks. NoCs consist of 

vast numbers of connections and can provide a platform for performance-based networks 

requiring a large throughput or a fault tolerance strategy. They have already been used 

for neuro-computing paradigms providing an interconnect for current SNN applications 

[64], [79]. Providing a scalable and low area/power overhead with a high communication 

throughput between neurons. In terms of a neuro glia network, NoC provides a scalable 

and low power/area overhead solution capable of providing communication protocols for 

two separate networks, which is of vital importance. The advantages of NoC technology 

are summarized below. 

 

Scalability: In terms of traditional interconnect protocols in hardware, previous 

approaches used a point to point or bus interconnect. These approaches work well with 

low numbers of PEs, however as the network scales, these approaches are unable to 

cope with the increasing load which affects the overall performance of the network. For 

example, in terms of using a bus. As the number of elements increases the bus is unable 

to provide adequate throughput as well as the network latency increasing with each 

additional PE. Fig.3.3. shows a 3x3 mesh network scales to a 5x5 mesh with low 

overhead and not a lot of added complexity. The bandwidth of a bus is proportional to the 

number of PEs which share the bus [17].  

 

 

 

Fig.3.3 Scaling NoCs, comparing a 3x3 array to a 5x5 array. 
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Within NoC technology, the network scales up by exploiting the short physical links 

between routers. This allows the NoC to handle more traffic and higher latency a lot better 

than the bus, of course this is dependent on the topology. It should be therefore noted 

the NoC has better tools and resources to cope with additional strain of additional PEs 

i.e. as the network scales with increasing numbers of PEs, the NoC scales with the 

number of routers connected to each PE. SNNs implemented using a hierarchical 

approach allows the network to scale efficiently with the increasing numbers of neurons 

within a network. H-NoC [79] allowed 400 neurons to connect within a single cluster and 

this opened the possibility of therefore connecting clusters together, this will be discussed 

in more depth in the latter parts of the chapter. Therefore, using the same approach in 

terms of astrocyte communication, is a promising solution to the interconnect paradigm 

presented by a neuro-glia network.  

 

Modularity: The NoC allows PEs to be connected within a network. A more interesting 

aspect is the modularity a NoC provides, allowing different PEs with different protocols. 

Each network adapter and router is connected to an independent PE. This allows the 

router to process the data and send it throughout the network. It is then possible to use 

one router for various types of communication e.g. the router receives 8-bit information 

from the network adapter. The network adapter identifies what the packet is and where it 

is going by reading the header within the packet and then sends it to the corresponding 

router. It may also accept a packet with 16 bits and again identify the packet and send it 

to its corresponding router. This allows the flexibility of using different network protocols 

within one network [88]. This is extremely appealing when understanding the mechanics 

and communication protocols within a neuro glia network. In terms of NoC engineering it 

is possible to connect two completely different PEs and connect those using similar 

routing schemes. For example, a GPU is made up of many processing elements, these 

are considered as dedicated hardware elements with different purposes such as graphics 

processing, within the GPU they are connected using the same routing interconnect as 

the router is separate to the PE, the router sends and receives the packets and sends 

them where they need to go. This can be applied to processing cells (neurons and 

astrocytes). 
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The topology can be considered a key component of a NoC. The topology defines how 

routers communicate. Another theoretical implementation of neuro-glia routers could be 

the use of different routers that use similar protocols for different communication types; 

an identifier within the packet is used to distinguish the type of communication. As well as 

where the information is required within the network, it could be used to exploit the locality 

of neurons and astrocytes i.e. connecting a neuron router to an astrocyte router. Fig.3.4 

shows a NoC protocol which connects different routers with similar protocols and shows 

a router connecting a neuron router to an astrocyte router. 

 

 

 

Fig.3.4 A theoretical overview of astrocyte and neuron routers communicating. 

 

It can also be viewed that as a network scales the modularity and topology are promising 

aspects of using a NoC interconnect. The options provided by the NoC are therefore 

exciting and endless. The idea is that a designer creating a neuro-glia network can exploit 

the scalability and modularity of NoC. This creates a communication protocol which 

exploits the reusability of routers. Doing so by reusing the neural and astrocyte cells. This 

allows the network the ability to focus solely on the number of astrocytes, neurons and 

how they are interconnected without having to recreate or redesign new communication 

protocols every time. 
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Communication Parallelism: NoC interconnects allow data to be processed in a parallel 

manner. Of course, when using independent PEs, the PEs process information in parallel. 

However, when compared to traditional buses, the bus suffers from increasing latency. 

This is because of an increasing number of PEs as the performance is reliant on the 

interconnect. This is particularly important where performance is based on throughput. 

Bus shared schemes use a shared point of arbitration where a bus controller manages 

and prioritize communication requests, causing delays and therefore increases latency 

[16]. Within a neural network, neurons are firing constantly at different rates. A bus 

topology isn’t ideal to deal with a network with this inherent parallelism. The NoC allows 

packets to traverse the network at will. When a spike occurs it can be directly sourced to 

its destination address. This parallelism can be exploited to take advantage of the 

interconnect and increase the throughput as neurons fire more rapidly. H-NoC [79] used 

a spike compression technique. After a neuron fired there was a biological time step of 

10ms, any neurons that fired in the same node would consequently be recorded within 

this time period and traversed through the network. This increased throughput and 

reduced latency within the network. A neuro-glia network would benefit in terms of 

parallelism within the NoC as it uses different communication protocols between two 

networks. This allows two different neural cells the ability to communicate and work 

independently, as it works in biological terms. 

 

Fault tolerance: A promising method of using NoC interconnects, is for the purpose of 

fault-tolerance in research applications. NoCs can be used in a fault tolerant manner as 

there are many routers and physical links between routers. The NoC can be utilized to 

reroute packets of information based on faulty links within the network. This is dependent 

on both the topology and routing algorithm e.g. the NoC can use adaptive routing and a 

mesh topology for fault tolerance. Fig.3.5. shows a number of faults occurring in a mesh 

NoC. Packets may be re-routed to avoid faulty links, using adaptive routing schemes a 

packet can be routed to avoid the faulty links. However, as this thesis focuses on self-

repair, there is no need for fault tolerant methods. 
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Fig.3.5 Faults occurring in an NoC interconnect. The PEs and routers are separate 

elements of the NoC, the blue arrows indicate a healthy line of communication between 

routers, both to and from the router, the red arrows and Xs indicate a faulty 

communication between routers. 

 

Granularity: There are advantages of implementing NoC technology which provide large 

scale SNNs with a hardware platform of which, the same benefits can be transferred into 

a neuro-glia network.  The NoC interconnect consists of many components and requires 

a lot of planning and iterations to be effectively employed. The following components will 

be discussed in more detail, with each having a significant impact; the topology of the 

interconnect, routing algorithms and router microarchitecture. Together these 

components make up an effective NoC interconnect which can be used to create a low 

area and power interconnect capable of handling both neurons and astrocytes within a 

neuro-glia network. The following subsections will discuss current NoC technology. 
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 3.3 NoC components 

A NoC can be broken into several components, which come together to define a network, 

and each component having its own characteristics. 

 

 3.3.1 NoC topologies 

A topology can have two very diverse meanings within the field of neurobiology and NoCs. 

For the former it may explain how neurons are interconnected and communicate within 

the brain. Within the NoC it describes the layout of routers and PEs. However, in the same 

vain it is an overview of how PEs and routers are connected and communicate within a 

given interconnect. The similarity can therefore be exploited to emulate a biological 

infrastructure using engineered technology. The NoC topology is measured using specific 

metrics and can be reduced to trading off performance and area overhead or fault 

tolerance. The role of the topology has a direct impact on the performance and capabilities 

of the NoC interconnect. Each PE is attached to a router and the routers are attached in 

a specific manner to suitably support on board communication within any given network. 

The topologies are generally defined and compared using the following performance 

metrics [89], [90]: 

 

Node Degree - This is the number of links at each node or router, including physical paths 

and communication channels to the closest neighbours, one or many. The number of 

input/output ports and size of each port can determine the complexity of the router 

(indicating approximate area and power overheads per router). 

 

Network Diameter - This is the longest path between a source router and destination 

router. The diameter of a network is calculated based on the minimum number of hop 

counts across a network.  

 

Hop Count – This is the number of hops a packet of information needs to traverse the 

network from the source/start router to a destination/end router. The average hop count 
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is calculated by determining the hop count between every source destination pair within 

the topology. 

 

Bandwidth – Simply put, the maximum bps (bits per second), which can be injected into 

the network in a predefined window of time, before saturation occurs. The bandwidth is 

the traffic the network can support; therefore, more bandwidth indicates the networks 

ability to handle traffic without inducing latency. 

 

Path Diversity - This is the flexibility in terms of routing channels within the topology. 

Each router may have a number of communication links, therefore the diversity of a path, 

refers to the number of paths a message can navigate between a start and end node. 

Usually this can be used in two ways, 1. To avoid traffic and this is determined by the 

routing algorithm and 2. The topologies fault tolerance capabilities. 

 

Although, not usually considered a performance metric, the method of communication 

within a network must be considered as this may affect the topology. This is the manner 

of nodes communicating e.g. by sending packets from point to point: unicast is from one 

core directly to another core, multicast is from one to many and broadcast is one to all 

[91]. This may impact latency and bandwidth within the interconnect. 

 

Variations of these metrics will impact the overall performance of the NoC. Performance 

metrics being throughput, latency and fault tolerance. It is difficult to directly compare 

network topologies unless the same number of nodes are present in each topology. Even 

so these structures can be implemented in hybrid or hierarchical topologies to improve 

overall performance. In terms of a flat 2D or direct topology there can be some 

comparisons made, to determine performance metric of given topologies with the same 

number of nodes.  

 

 3.3.2 Traditional topologies 

The following are the most common direct topologies [89]: 
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Ring - This topology provides a network with a simple interconnect solution. It provides 

each node with a direct communication path to two nodes. The simplicity results in a high 

latency low area interconnect. Unfortunately, it does not support fault tolerance and is not 

scalable. In terms of throughput and latency it performs poorly, whilst also providing little 

fault tolerance, however it can be used to utilise a low area overhead in applications where 

throughput isn’t of great importance Fig.3.6. shows a typical ring topology. 

 

Mesh - This interconnect provides a simple interconnect capable of supporting fault 

tolerance and scalability. The mesh balances throughput and network latency. It is a basic 

topology and can be implemented in a number of ways due to its flexibility. Depending on 

how it is to be used the mesh may be used to support and focus on performance or fault 

tolerance. The node degree is either 2 or 4 depending on where the source node is 

situated, this is not good for traffic load balance, Fig.3.7. shows a typical mesh topology. 

 

Torus - This is an improvised mesh which provides the outer nodes of the topology with 

a direct communication path with nodes on the opposite ends. This increases the node 

degree to 4 for each node. This allows the NoC to balance traffic appropriately, the 

average hop count also improves and again, as with mesh, it supports fault tolerance. 

Fig.3.8. shows a torus topology. 

 

 

 

 

 

 

 

 

 

Star or Direct – Star or point to point, provides each node with a direct link to a central 

node. This provides a one-layer communication structure. The direct link results in low 

latency and due to the structure works very well with unicast communication or multicast 

 
Fig.3.6 Ring Topology Fig.3.7 Mesh topology Fig.3.8 Torus topology 
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communication as the central node may replicate packets and direct them as appropriate 

to the leaves of the star. Star topology however does not support fault tolerance; there is 

only one path for each node and in cases of a faulty path the packets have no way around 

this link [90]. Fig.3.9 is a star topology. 

 

Fig.3.9 Star/Direct topology.            

 

Tree – A Tree topology, this approach offers a hierarchical structure. This provides a high 

level of communication between nodes as messages are routed up from a node to a 

common ancestor and then routed down to the appropriate node. The advantages of 

using a multi-level approach are high levels of communication and the support of one-to-

many messages. The main disadvantage is fault tolerance, as it doesn’t provide sufficient 

path diversity [91]. 

 

Honeycomb - The Honeycomb structure can be compared to Mesh or Torus topologies 

where the advantages are low complexity in terms of hardware, fault tolerance and there 

is lower hop count between nodes. Honeycomb meshes have 25% smaller degree and 

18.5% smaller diameter than Mesh with the same number of nodes [92]. Fig.3.10. below 

shows the concept of the honeycomb topology.  
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Fig.3.10 Honeycomb topology [92]. 

 

Table 3.1 compares 2D topologies using traditional performance metrics. Each topology 

has pros and cons depending on the main objective which will dictate the selection of a 

NoC topology. N is the number of nodes in a network, hop count is 2N – 2 in mesh and 

2N/2 in torus.  

 

Table 3.1 Comparing traditional network topologies 

 

There are also indirect topologies [89] including Butterflies, Clos Network and Binary Fat 

tree. These topologies can increase overall throughput. However, they come at increased 

complexity and power/area overhead.  

 

Network Size 4x4 16x16 

Topology Node 

Degree 

Max. Hop 

Count 

Path 

Diversity 

Node 

Degree 

Max. Hop 

Count 

Path 

Diversity 

Ring 2 4 1 2 16 1 

Mesh 2, 4 6 6 2, 4 254 6 

Torus 4 4 N/A 4 128 N/A 

Honeycomb 3 N/A N/A 3 N/A N/A 

Star 1 1 0 1 1 0 
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This table based on performance metrics, may not give an overall definite conclusion to 

the best topology. For example, Ring shows poor performance and poor fault tolerance 

overall however, it is simple and supports slower communication protocols. Mesh 

supports fault tolerance with improved performance but must incur an increase to both 

area and power overheads as well as increasing complexity. Torus is similar to the mesh 

as it may balance traffic a lot more effectively but the cost comes with increased overhead. 

Star has the best performance as it has point-to-point connection between nodes and a 

router. The hop count is 1 although it has no room for any fault tolerant strategies. 

Honeycomb is similar to a mesh and torus with reduced area overhead and a reduced 

hop count [92]. When comparing topologies solely on performance metrics, it is difficult 

to draw conclusions, therefore the application for the NoC must be considered. 

 

 3.3 Advanced hierarchical topology 

A Hierarchical topology approach aims to exploit the strengths of diverse topologies by 

combining them in virtual 3D or hierarchical regions [93], [94]. This has been shown to 

increase performance and reduce area and power overhead. This is due to the grouping 

of elements into clusters and focusing on short communication paths between elements 

with fewer longer paths. One very important aspect of hierarchical topologies is exploiting 

the communication locality within clusters of PEs as this can improve throughput and 

reduce traffic [95]. Examples of using a hierarchical topology include implementing a star 

ring topology for real time object recognition focusing on 1-N (1 to many) communication, 

reducing time and energy consumption. This is a multi-level topology where the routers 

are distributed between cores and connected by using both star and ring topologies. 

There are eight low-level routers (local) and four high-level routers (global), using two 

separate topologies which keeps local nodes connected with global nodes Fig.3.11 shows 

the star-ring topology [96]. 
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Fig.3.11 Star-Ring Hierarchical Topology [96]. This hierarchy is made up of a two-level 

star and a two-level ring. The dashed lines show a 4x4 mesh consisting of three different 

PEs labelled 1, 2 and 3, respectively. Overall, there are five PEs and the network is 8x8. 

This hierarchy is optimised to connect all the PEs within this network. 

The focus of combining topologies aims to take the advantages of individual topologies 

and combine them, for example combining star and mesh, this will reduce hop count 

whilst maintaining a good path diversity for fault tolerance [90].  

 

Due to natural progression, 3D topologies have been introduced and implemented [97], 

[98]. 3D interconnects propose adding a vertical axis into the interconnect by stacking 2D 

interconnects. This has been shown to increase the throughput and reduce power 

consumption and area overhead [99], however, it is more complex to realize in hardware 

due to the fabrication process. 

 

 3.4 NoC communication 

A NoC uses packets of data to send information from router to router. The PE sends 

information to the network interface and this interface packetizes the information and thus, 

will send the data to the appropriate router to communicate. After a topology is defined a 

routing algorithm is implemented to send the packet of data through the network from 

source to destination [89]. Packets are messages containing information made up of a 

header and address information as well as the information which needs to be 

communicated to other PEs. Fig.3.12 outlines a typical NoC packet. 
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Fig.3.12 A Typical NoC packet: Consisting of a Head, Body and Tail flit, the Head flit 
generally contains the address header [89]. 

 

Routers can send packets as one to one (unicast), one to many (multicast) and one to all 

(broadcast). This will have an impact on which routing algorithm is to be used. The aim 

of the routing algorithm is twofold, balancing the traffic load across a network and also 

getting messages to the correct correspondent. Before choosing an algorithm, it is 

important to take these variables into consideration: 

 

Number of destinations/ Type of transmission [89] – Based on the number of 

destinations and type of message transmission. The routing algorithm must be based on 

the needs of the network. Unicast, multicast and broadcast, have very specific 

requirements to be adhered to, unicast is useful for point to point communication between 

PEs and multicast and broadcast may be used to mimic biological signals. The neurons 

can send a signal to multiple or all targets in a neural network, this can be considered one 

to many or one to all communication. Due to neuro glia networks consisting of neurons 

and astrocytes. The variation in communication strategies, and is a great advantage of 

NoC due to astrocytes communicating in a one to all fashion when communication with 

other astrocytes. This whilst communicating with neurons directly in a point to point or 

direct fashion. 

 

Routing decision [89] – A routing decision is dependent on how the network will 

distribute packets and communicate between nodes; centralised routing uses one 

controller router to makes decisions between routers. This controls routers 

communicating and sending packets. Source routing uses the source node i.e. the router 

communicating with the node sending information makes the decision or distributed 

routing where all routers involved in the communication to create a path i.e. wormhole 

routing. This is a difficult approach to identify and set in stone. As a result, the router 
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connected to the source node makes an initial decision e.g. the destination of a packet. 

The routers in between aim to complete this routing path. If there is traffic, the router is 

adaptive and may change the predefined path based on traffic within the network. 

 

 3.4.1 Routing algorithm 

The three main approaches to routing algorithms are Deterministic Routing, Oblivious 

Routing and Adaptive Routing. 

DOR/Deterministic Routing - This algorithm insists on one known pathway for a packet to 

travel between source and destination in a network. It is very basic and limited in regard 

to traffic congestion and/or faults within the network. Concerning congestion, if there is a 

blocked pathway stopping a packet from reaching its destination the router will still send 

packets regardless. If all pathways are predetermined to avoid congestion i.e. not allowing 

many nodes to access the same pathway, then this may improve throughput however 

due to faults being unpredictable. If a path is damaged the router cannot take this into 

account it will attempt to keep using the faulty pathway, which results in lost data.  [89]. 

 

Oblivious Routing - This allows a random path to be chosen by the router between source 

and destination. Thus, packets will not always travel the same path. This  routing 

algorithm doesn’t take traffic congestion or faults into account and has no effect on 

balancing the traffic load causing congestion [89]. The advantage this algorithm has over 

the DOR is that because of its random nature, traffic load will be spread more evenly 

throughout the network without implementing a predetermined route between each node. 

It is also better at dealing with faults as only some packets will be lost during transmission. 

 

Adaptive Routing - This is the most advanced routing strategy as it allows a router to 

select a path for a packet to travel between nodes. Factoring in traffic congestion and/or 

faults in the network, faults or hotspots can be avoided within the network by using a 

different path. This routing approach offers a level of fault tolerance as a faulty path may 

be avoided [100]. This is also used for balancing the traffic load within a network by 

avoiding congested paths. This leads to increasing throughput and reducing congestion 
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[101]. It will also result in increased complexity and area overhead within the router. 

Adaptive routing has also been applied to large scale SNNs [102]. 

 

Based on the methodology of the network and the optimal topology and routing decision 

and algorithm, a network can be implemented to communicate data within the network 

and therefore, in the context of a neuro-glia network, the above variables will have a large 

impact on the network and thus the implementation of this network. There are two main 

ways of implementing routing algorithms, finite state machines (FSMs) or look-up tables 

(LUTs). A LUT is a simple and quick technique, it uses a table within the router to 

predefine keys or paths for the router, when a packet comes in the router looks at the 

table and selects the path [89]. The downside with a LUT implementation, is the area 

overhead. As the table size increases, the more flip-flops are needed to fit the constraints 

which therefore uses more resources and increases area overhead per router. A FSM on 

the other hand, can be used in a very efficient and intelligent way, each state is designed 

to handle different parts of the routing process. A packet comes in to a router, the router 

looks at the header address and destination address within the first state, and then based 

on the information, it may go into the second or third state and thus state machine makes 

a decision on where the packet will go. FSMs are very flexible but more complex than 

using LUTs, they take a longer time to make a decision, which may increase latency within 

the network itself. Therefore, the implementation of the routing algorithm is as important 

as the algorithm itself. 

  

 3.4.2 Router micro-architecture 

When a topology and algorithm have been consequently chosen, a router micro-

architecture is developed, the topology and routing algorithm heavily influence the micro-

architecture of the router. The router has several functions as it is responsible for receiving 

and sending packets from source to destination within a network, this information is 

contained within the header and address information contained on packets. The router 

consists of various elements: Crossbar switch, Link controller, Virtual Channel controller, 

Routing and arbitration unit, Buffers and Processor interface [91]. Fig.3.13 shows a basic 

NoC router design. 
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Fig.3.13 NoC Router Microarchitecture [89]. 

The router micro-architecture has an overall effect on the power consumption and area 

overhead as well as throughput [89] therefore the router design is critical.  

A router is made up of the following components [89]: 

 

Input/Outputs ports - these are physical input and output channels within the router, 

they connect the routers within the network. 

 

Virtual Channels (VCs)/Buffers - A virtual channel is a buffer on the input, several VCs 

are placed on the one physical wire. When a packet is sent, it is split into flits, these flits 

are sent in a specific order. The next flit will not be sent until the previous flit has been 

sent, this causes queues in the inputs. A virtual channel allows a separate message to 

traverse the same physical input channel even though a separate VC may be blocked. 

 

VC Controller - This controls the multiplexed nature of the VCs and ensures several VCs 

can use the same physical link.   

Crossbar - This connects the inputs to the outputs. A crossbar allows full connectivity for 

all the physical channels.  
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Routing and Arbitration Unit - This is the component responsible for choosing the path 

of each packet, the packet will arrive and depending on the address header an algorithm 

will be used to communicate the packet. 

 

The complexity of the router will mould and define the router, in terms of the network, the 

router has the greatest impact on power and area overhead. The router micro-architecture 

is dependent on several variables and there is no one way of creating a router. There are 

a number of components which should be standard for all routers. These are configured 

for each individual network and its constraints i.e. increasing the number of input/output 

ports etc. A typical flow of information from the inputs to the output ports, depends on the 

complexity of the router and is of utmost importance when evaluating the performance of 

a network in terms of throughput, latency, power and area overheads, and all must be 

considered when developing routers for a neuro-glia network. 

 

 3.5 Challenges of a neuro-glia NoC interconnect 

Astrocytes connect to groups of neurons in clusters, and also form their own networks. 

Emulating a neuro–glia network in hardware introduces additional interconnect 

challenges beyond current SNN hardware. For example, it is not just the additional 

connections, which in itself is challenging, but the network must support two very diverse 

communication protocols. The two main factors are 1. The type of information 

communicated between astrocytes and neurons, and 2. The different timescales involved. 

The key challenge is to design a new interconnect mechanism in hardware which can 

accommodate (1) the increased number of interconnections of neuro–glia networks, (2) 

the different types of data being communicated and (3) the varied time-scales between 

signal exchanges.  

 

This challenge is compounded by the need to achieve this with the following challenges 

in mind: 

 

Power consumption – This is directly proportional to the number of routers within a 

network. The biggest source of power consumption is the routers within the NoC 
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interconnect [103]. The router architecture within a large-scale neuro-glia network along 

with the number of routers between astrocytes may have a huge impact on overall power 

consumption. These must be kept within tight constraints; the network topology is critical 

to optimise the number of routers used. Exploiting the parallelism of a neuro-glia network 

using NoC technology and a hierarchical topology could minimise power overheads and 

exploit the local and global communications whilst not reducing the neuro-glia capabilities. 

 

Area overhead – The router complexity determines the area overhead. The complexity 

is dependent on the performance requirements and the number of routers required within 

a network. A simple router, without VCs e.g. as shown by [89], may be implemented when 

throughput isn’t critical but there must be a balance between area and throughput. 

Hierarchical topologies can exploit the communication locality between nodes and 

maintain a scalable topology whilst maintaining a low overhead. A hierarchical topology 

can exploit the advantages of several topologies and with a slow communication 

throughput. The astrocyte can use a ring topology to exploit the simple topology and local 

communication between astrocytes and use a point to point for global communication. 

 

Throughput – The router and application determine the throughput constraints. Along 

with an adaptive routing scheme, high throughput requires increased micro-architecture 

complexity. The number of VCs and buffers will affect the throughput, which will increase 

power and area overhead [89]. However, a neuro-glia network, has a very slow 

communication protocol as calcium waves oscillate and gradually change. This can be 

exploited as the network does not have to support throughput and can be designed to 

exploit the rate of change within astrocyte networks. 

 

Traffic congestion – With a SNN, traffic is inherent due to the rate at which neurons 

spike. H-NoC [79] used a spike compression technique to increase throughput when 

neurons began firing. Astrocytes are slower in terms of speed of transmission and have 

a bigger payload. This may cause latency within the network. Using a similar technique 

traffic congestion may be reduced within the network. Neuro-glia networks change 

gradually and when one astrocyte wants to communicate a time step may be introduced 
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to listen to the other astrocytes before making a decision regarding communication to 

other astrocyte cells. 

 

Complex topology – The complex interconnect of the brain is very difficult to mimic in 

hardware. The dense infrastructure of neurons and astrocytes, the communication, the 

connections and separate network protocols is difficult to capture. Using a hierarchical 

approach allows PEs to be connected in such a way to allow parallel networks to work 

independently. This includes, in theory, a SNN and a network of astrocytes. H-NoC [79] 

presented a topology that exploited separate advantages. Combining a point to point 

topology with mesh allowed the high throughput of the star topology and also maintained 

a scalable factor when the network is scaled. By extracting the constraints of a biological 

system, topologies can be explored and optimised to allow biological systems to be 

emulated. A hierarchical topology increases the overall complexity of a network. This 

approach would support using separate routers and protocols and allow communication 

between networks. It can maintain a low area and power overhead constraint and would 

remain scalable, i.e. the number of astrocytes would require scalability as the network of 

neurons scaled.  

 

Granularity – The number of neurons and astrocytes within a neuro-glia network is vast. 

For every ten neurons there is one astrocyte, this will require a complex interconnect to 

allow communication between neuron to neuron, neuron to astrocyte and astrocyte to 

astrocyte communications. The NoC will require a hierarchy to support all processing 

elements and all subsequent communications within the NoC. This is two parallel 

networks running simultaneously. A small-scale network of 1,000 neurons would require 

100 astrocytes. 

 

 3.6 Summary 

The challenges of implementing a neuro-glia network is the connectivity of the two 

networks. Implementing a NoC interconnect mechanism to facilitate the complex 

connectivity of this structure is a promising solution. This chapter also reviews current 

SNN hardware and how the NoC has provided a solution for the high levels of 
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connectivity. Therefore, NoCs have been reviewed as a viable solution for a neuro-glia 

network connecting a SNN with astrocytes. 

 

As NoCs are highly effective at supporting high throughput and dense communication 

infrastructures, such as SNNs, they provide a perfect platform for exploring neuro-glia 

networks and can support large numbers of PEs i.e. astrocytes and neurons. It discusses 

more recent work and research exploring astrocytes within neural networks, for the 

purposes of self-repair. A neuro-glia network of vast communication protocols presents 

an interconnect problem in terms of both power and area. These protocols are required 

for the number of connections for both neurons and astrocytes. Current spiking astrocyte-

neuron networks are exploring large networks with many neurons and astrocytes. As the 

number of PEs increase the communication and interactions between PEs increases. A 

promising solution is to use network on chip protocols, as a way of realizing large 

networks and dense communication procedures. The following chapter introduces 

Networks on Chip (NoC) and the challenges and constraints of this communication 

protocol, and how it may be used to realize a neural-glia network in hardware.   

 

Exploring a NoC approach for neuro-glia networks, is a promising prospect. NoCs are 

flexible, support many PEs, and are intrinsically parallel while maintaining low overhead 

and high performance. It is the development of the network to exploit these traits which 

remains difficult. The plausibility of supporting a large-scale neuro-glia network in 

hardware is plausible using network on chip technology. The neuro-glia network has the 

advantage of having a slow communication speed, thus allows some room to reduce the 

area overhead within the network itself and balancing the throughput of the network with 

the overhead it must incur. Using a hierarchical topology, allows vast numbers of PEs to 

connect and allows room for development of individual protocols for the astrocyte 

network. The network will be developed with the overall goal of self-repair in mind, using 

a hierarchical topology, adaptive NoC routers and efficient communication protocols. 
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 Chapter 4: The Fault Model 

 4.1 Background 

Electronic systems and devices are only as reliable as their components. As devices 

become smaller, components in turn, become smaller. The drawback is, they are less 

reliable.  As such, the intention to increase longevity and functional life time of electronic 

systems is considered important. In consumer devices, repair is manageable, the device 

is sent back to the manufacturer and the faulty component replaced. When a component 

cannot be replaced, or a device cannot be physically repaired, it becomes useless. 

However, this is not an option for mission critical systems. The loss of funding and time 

researching due to a faulty device or system is unthinkable.  

 

Systems are decreasing in size and this results in components becoming smaller and 

more prone to faults. Moore’s law, a trend observed by Gordon Moore in 1965, predicted 

that the number of transistors on an integrated circuit approximately doubles every two 

years [20]. This scaling is referred to as geometric scaling; a decrease in the size of 

systems and components with identical physical capabilities [21]. However, this results in 

a system becoming more prone to faults where systems may be affected directly. By 

either faulty components or interconnect (this can be caused during the manufacturing 

process) [8]. Fault tolerance leads to more reliable and robust systems.  

 

Faults can be characterized as either soft or hard; the latter being permanent and 

unrecoverable. Soft faults are temporary and common. They are caused by radiation and 

power fluctuations. They can be repaired or corrected by resetting or reconfiguring the 

device, usually a system reset restores functionality. Hard faults are caused by physical 

defects in either a component or the silicon interconnect; by either wear-out or defect 

during the device manufacturing process [22], [23]. To maintain functionality and increase 

operational lifetime of an electronic system a method of fault tolerance or self-repair is 

required. This is important for mission critical systems, when a system is deployed it is 

unable to be repaired using traditional physical means, usually in space or avionic 

applications [24]–[26]. Current fault tolerant mechanisms are based on coarse grained 
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redundancy and employ the use of a central repair-decision agent to either find faults or 

correct them e.g. Triple Mode Redundancy (TMR). TMR is used in mission critical 

systems and other areas of hardware development [10], [27]– [30]. TMR is the process 

of replicating critical components three-fold and using a voting mechanism (comparator) 

to compare the three outputs and detect discrepancies [31]. This process vastly increases 

the area overhead [32], and although it may ensure the system can endure faults or the 

loss of critical components, it relies heavily on spare parts and the use of the comparator 

(voter) [33]. Other methods include online detection/correction and autonomous self-

repair, the former allows testing during operational lifetime. This however, can be invasive 

to the normal operations, interrupting or shutting down system resources, which is not 

ideal in system operations [34]. Low level granularity (gates and components) 

characterises the key weakness of existing approaches of repair, as repairs implemented 

at a low level incur a large area overhead. This low-level approach does not use TMR, 

this is due to the work focusing on self-repair within SNNs and replicating all synapses 

three-fold would increase the area significantly. It is possible to use both TMR and 

astrocytes however, this is unnecessary as astrocytes perform self-repair at a low level 

(the synapses) and the astrocytes perform repair by increasing the PR on healthy 

synapses. This design ensures a graceful degradation, as the network degrades over 

time the astrocytes perform repair, this ensures reliability over time and is an alternative 

to TMR. For example, the overhead incurred at the lowest level, a low-level router which 

is one wire for communication between one astrocyte to ten neurons. The overhead to 

ten neurons connected in a star topology to an astrocyte is ten wires, 10x, including TMR 

this is 30x. This chapter also provides a review of existing fault models and fault-tolerant 

techniques. 

 

 4.2 Fault tolerance and self-repair strategies 

As technology advances, most applications have become reliant on using general 

purpose CPUs. As we push the boundaries of traditional engineering for huge tasks, 

general CPUs aren’t enough. In remote areas such as space, it is common to use 

radiation hardened microprocessors, as the harsh environment causes bit flips and errors 

[104], [105]. Radiation hardened FPGAs are more common in space applications [1] and 
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as NASA release projects like the Mars rover Curiosity [1] and Juno [2] which was sent 

to Jupiter, these missions require huge amounts of engineering resources. The 

technology must also include fault tolerance and is becoming a major cost factor when 

developing and manufacturing electronic applications [106]. This is due to the number of 

things that can actually go wrong, in other words, there are more components so there is 

an increased potential for faults or errors. That being said, applications are also prone to 

faults due to geometric scaling, which affects electronic chips and reduces the 

functionality and reliability. The smaller the component becomes, the more sensitive it is 

to both manufacture variations and tolerance accumulations. Faults are developed due 

to normal degradation and wear out, or design/manufacturing defects. Faults may cause 

degradation in the performance of a system before it completely fails.  

 

Faults can be classified into two main groups, referred to as soft errors or hard faults. Soft 

errors are temporary and more common, they are caused by radiation and power 

fluctuations, and they can be repaired or corrected by resetting or reconfiguring the device 

[107]. Hard faults are caused by physical defects in either a component or the silicon 

interconnect; by wear-out or during the device manufacturing process, rendering the 

afflicted areas useless [108], [109]. There are numerous methods employed to increase 

robustness and reliability within electronics which are discussed in the following sections.  

 

Current fault tolerant mechanisms are based on coarse grained redundancy and employ 

the use of a central repair-decision agent to either find faults or correct them e.g. TMR is 

generally employed in mission critical systems which cannot be repaired after deployment 

[10]. TMR is the process of replicating critical components three-fold and using a voting 

mechanism (comparator) to compare the three outputs and detect discrepancies. This 

process vastly increases the area overhead. Although it may ensure the system can 

endure faults or the loss of critical components, it relies heavily on spare parts and the 

use of the comparator (voter). Other methods include online detection/correction and 

autonomous self-repair, the former allows testing during operational lifetime, this can be 

intrusive and interrupt or completely stop normal functioning which is not ideal for most 

applications [110]. The key weaknesses of existing approaches is limited granularity at 
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which repairs can be implemented (gate, component level) and in particular, the lack of a 

distributed repair-decision mechanism. It is important to note that the area overhead will 

increase when replicating components and if the comparator fails, the system also fails 

to detect faults. There are several methods currently used to detect faults. 

 

 4.2.1 Online testing 

Online testing refers to detecting errors throughout a systems operational lifetime and is 

typically applied in mission critical systems when operation cannot be interrupted. Online 

testing typically utilizes a central unit or additional hardware for the detection of errors. 

Errors are generally pre-defined and a detection scheme for these errors is predetermined 

e.g. the testing mechanism may focus on detecting faults at switches, where errors may 

cause packets to get stuck in the wrong output port [111]. Error detection schemes must 

be used in conjunction with other methods or detection schemes to be effective as a fault 

tolerant system [112]. Within NoCs fault detection is distributed and focuses on the three 

main components: PEs, routers and the interconnect [113]. The PEs are cores or CPUs. 

The routers are required to transport packets of data within a network and the interconnect 

refers to physical wires which connect cores, this will be discussed later in the chapter. 

 

There is a trade-off for online testing as it must not impact typical behaviour and the 

frequency at which testing occurs must be balanced. This is necessary to detect errors 

early but also not consume excessive access time of the NoC. The aim is to test certain 

aspects of the system with minimal intrusion and detect errors before they cause further 

damage. In isolation, detection is limited, and it should be applied in conjunction with 

some sort of error correction or self-repair procedure, e.g. adaptive routing in NoC 

systems. The main disadvantage of online test methods is increased area overhead and 

is generally used for the detection of specific faults or errors that may occur. Although an 

online system provides testing for faults, it doesn’t include any form of self-repair. For 

further examples of online detection please refer to [110], [114]. 
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 4.2.2 Hardware redundancy 

Hardware redundancy approaches such as TMR [10] are common. A single voter 

mechanism resides amongst the hardware and detects irregularities by comparing all 

outputs against each other. In a working system all outputs should be identical. This can 

then be used in conjunction with a Cyclic Redundancy Check (CRC) in case more than 

one instance of a component is damaged [115]. In particular, the key weakness occurs 

with the single voter unit for detecting a fault as it’s a single central component and prone 

itself to faults. In addition, when one of the backups fail, there is no scope to accommodate 

further faults. Modern neural based processing systems like SpiNNaker also utilize 

redundancy in cases where a processor fails [64] as they provide spare processors on 

the chip. This is done at a processor level (coarse-grained) and is not efficient in terms of 

area/power (scalability) as often a fault may only affect a very small element of a complete 

processor and when this occurs the complete processor is non-operational.   

 

 4.2.3 Autonomous self-repair 

The process of self-repair goes beyond simple redundancy models and can be defined 

as a systems ability to overcome faults by adapting, with minimal degradation of 

performance. In biology this phenomenon has been developed through evolution; 

however, looking to biology for self-repair mechanisms is difficult as an electronic system 

cannot grow components in silicon. Self-repair without the constraint of a central 

fault/detect repair unit has been explored [109], [112], [115] [116]–[118]. These self-repair 

mechanisms focus on distributed methods of self-repair not relying on one central 

controller or one method of fault tolerance. One such mechanism [109] indicates the use 

of reconfigurable hardware as a method of self-repair on FPGAs, thereby taking 

advantage of the reconfigurable aspect of the hardware and implementing spare cells 

which can be used for self-repair. The authors claim that this strategy does not require 

spares as they can build all repair techniques within the system. 

 

Research from [115] provide two methods of biologically inspired technology, a three 

layer “POEtic chip” using their “ontogenetic model” for self-repair. This chip facilitates self-
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repair by allowing partial reconfiguration of cells. The model can replicate the functional 

part of an existing cell to that of a spare cell and creates, or reconfigures, data paths 

between resources. A second method introduced in the same paper is based on the same 

principles, inspired by cell division. Fault detection is facilitated through the use of 

redundancy (TMR) and the use of CRC. When a fault is detected, routing takes place to 

enable reconfiguration in a spare cell. The spare cell is then reconfigured from the voter 

mechanism and when it is finished it destroys the input signal as to not be affected from 

further reconfiguration. While this does offer a detailed and adaptive self-repair model, 

although it isn’t often reported, the area overhead incurred by using TMR for fault 

detection will increase these components three fold [115]. The spare cells used for 

reconfiguration will also incur a large area overhead. There is no mention of how 

disruptive the cell duplication may be or how this may affect performance or typical 

operation. These current self-repair mechanisms are still fundamentally based on 

redundancy and replicated instances of hardware e.g. TMR and Dual-FPGA architecture 

[109]. The use of spare cells is a double-edged sword, on one hand it allows 

reconfigurable hardware for self-repair however the system is complex and is then limited 

by the number of spare cells available which also vastly increases the area overhead. 

Biology and evolution progress to date, sets the motivation to continue exploring how we 

can exploit them in advancing electronic system design. Implementing astrocytes to 

facilitate self-repair is a radically new model of repair and could provide a low power/area 

solution which facilitates repair. 

 

 4.3 Fault models 

An SNN can be deployed as an application using an FPGA or ASIC (specialised 

hardware), this is because SNNs are efficient, reliant and robust. The hardware is 

installed in an area which may be considered a harsh environment. For example, an SNN 

was deployed in Spain where it was trained to classify sensor data in order to predict 

forest fires [119]. It is very possible that SNNs will be used to classify sensor information 

within these harsh environments such as space, the ocean or in radiated environments, 

such as deploying robots for exploration or predicting natural hazards in order to react 

faster. 
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The hardware used must be robust, as there are a number of things that could go wrong, 

fault tolerance using TMR, is not a complete and reliable solution as the system when 

compromised, is unreliable. A more complete paradigm in the form of astrocytes and 

reliable and self-repairing electronic hardware provides a more promising solution. For 

example, an SNN has input neurons connected to sensors; these sensors are used to 

classify damage or predict natural hazards. The SNN is trained offline and is used to 

classify sensor data based on the sensor inputs. The SNN may be susceptible to 

electronic failures and faults e.g. a sensor failing; but rather than becoming completely 

useless when it is first compromised by a fault e.g. a sensor failing, it is possible to employ 

what can be considered as a graceful degradation i.e. if a sensor fails or neuron fails the 

SNN will continue to work. As long as the network can classify data, even though a neuron 

has failed within the network, the SNN is still reliable, the accuracy may be reduced, but 

the longevity and increased operational lifetime have huge benefits. 

 

It is possible to have faults at all levels and these fault models have been outlined below. 

These have been derived as possible faults based on an SNN implemented on hardware, 

as a result, there are potential faults in more than one aspect. There are three main 

aspects: 

 

1. Biological model 

The SNN/Astro-network has a number of components where failure can occur: 

 Neuron – If a neuron fails it is seen as being a silent neuron, this doesn’t affect the 

model as the network will disregard the silent neuron and increase the PR of 

healthy neurons. If the neuron is an input neuron the network will be able to classify 

with the remaining data up to a point, but this at this moment currently unknown. 

 

 Astrocyte – The astrocyte has the potential of being faulty, as it is a complex 

process. This could be similar to losing a central repair component in a small 

network however, the astrocyte network is distributed, and it is this distributed 

manner that makes the neuro-glia network robust. If an astrocyte has a fault, the 

neighbouring astrocytes within the network will exchange signals in order to restore 



72 

the network, this complex network can be seen in Fig.4.1. which shows a large-

scale neuro-glia network. This large-scale network is yet to be understood fully. 

 

 Synapse – this is just one part of the network, and typically it may be viewed as 

the least significant, however, it is the interconnectedness of the network which 

makes it robust. The large number of synapses connected to each neuron ensures 

that if there is a fault i.e. a neuron has stopped firing, the PR in healthy synapses 

increases and restores functionality to the SNN.  

 

This fault model is based on software models where up to 80% of synapses can be 

damaged. Damage to neurons and synapses is expected, this biological model offers an 

alternative and biologically inspired model of self-repair for SNNs. 

 

2. Low-level electronics 

The fault model is built up from low-level logic and electronic circuits. There are again 

several aspects; “biological” faults and electronic faults. For the former, if there is a fault 

in a neuron or astrocyte it can be considered a biological fault, that is the loss of a 

biological component, this is because even if the hardware is destroyed the self-repair 

capabilities can overcome the faults and the network will degrade, but it will do so over a 

longer period of time, this is graceful degradation as electronic components eventually 

falter and fail. 

 

Other fault scenarios in the electronics are expected; such as stuck-at-one/zero or 

transient glitches. Overall, such faults would not affect the operation of synapses or 

neurons. These are viewed as soft-faults, typically a system reset is required, however, 

the SNN is a reliable and robust network typically restoring activity when affected by hard-

faults. If a neuron or synapse is not operational they are viewed as hard faults, the neuro-

glia network can reliably overcome such faults. 
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Note: These faults might affect the astrocytes but are yet to be tested, a more complete 

neuro-glia network would have to be realised in order to explore how these faults would 

affect the operational lifetime. 

 

3. FPGA/NoC interconnect 

Faults within an NoC interconnect can be very common. There are several methods of 

fault tolerance applied when choosing an NoC topology (e.g. mesh); using adaptive 

routing it is possible to circumvent faults in the NoC interconnect by allowing the routers 

to choose the path of the communication. In terms of the SNN hardware this can again 

be viewed as a biological fault within the network, the loss of neurons or synapses within 

a large scale network will affect the overall functionality of the SNN, but the aim of self-

repair is to tolerate these faults. For astrocyte communication, dedicated routers are used 

in Chapter 5 and 6 in order to facilitate self-repair within the SNN. 

 

The SNN will not be affected by soft- or hard- faults as the neuro-glia network will restore 

functionality which will lead to a robust SNN within a neuro-glia network. The focus of self-

repair is employed to allow a network to degrade over time and prevent loss of accuracy 

and precision. It is possible to have faults in the astrocyte hardware, but a large-scale 

neuro-glia network, will have a number of astrocytes, the operation of these astrocytes is 

not the objective of this thesis, rather the aim and objective are to build an interconnect 

capable of supporting SNN operations using an astrocyte network. 

 

 4.4 Drawbacks of existing approaches 

Current fault-tolerant methods are limited as they are application specific and are mostly 

based on redundancy. For example, TMR. This process vastly increases the area 

overhead [32], and although it may ensure the system can endure faults or the loss of 

critical components, it relies heavily on spare parts and the use of the comparator (voter) 

[33]. TMR will fail when a critical component has failed or is compromised whereas, the 

neuro-glia network can be developed to keep on functioning, providing a graceful solution 

to this particular problem. Regardless of the fault; hard or soft, biological or electronic, the 
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neuro-glia network may continue to operate in harsh environments, without the expensive 

area overhead induced by redundancy. 

 

There are other methods such as online detection/correction and autonomous self-repair, 

the former allows testing during operational lifetime. This however, can be invasive to the 

normal operations, interrupting or shutting down system resources, which is not ideal in 

system operations [34]. Low level granularity (gates and components) characterises the 

key weakness of existing approaches of repair, as repairs implemented at a low level 

incur a large area overhead. This low-level approach does not use TMR, this is due to the 

work focusing on self-repair within SNNs and replicating all synapses three-fold would 

increase the area significantly. It is possible to use both TMR and astrocytes however, 

this is unnecessary as astrocytes perform self-repair at a low level (the synapses) and 

the astrocytes perform repair by increasing the PR on healthy synapses. This design 

ensures a graceful degradation, as the network degrades over time the astrocytes 

perform repair, this ensures reliability over time and is an alternative to TMR. For example, 

the overhead to ten neurons connected in a star topology to an astrocyte is ten wires, 

using a solution such as TMR this is 30x the wires alone.  

 

 4.5 The Objective 

A neuro-glia network is a large-scale network capable of self-repair. The network is made 

up of a neural network and an astrocyte network which work in parallel. The SNN is used 

for classification and supported by the astrocyte network. The astrocyte can appropriately 

deal with faults within the SNN, typically silent neurons or faulty synapses, this area of 

research is at an early stage however, the aim is to deploy SNN hardware in harsh 

environments, wherein typical applications may fail, to provide a long-term solution and a 

reliable and robust hardware application. Figure 4.1 shows a completed neuro-glia 

network realisation and provides an overview of a large-scale application. This figure 

shows five astrocytes interconnected and each astrocyte supporting a large-scale SNN 

application. 
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The objective is to deploy neuro-glia networks on specialised hardware in harsh 

environments. This hardware contains an SNN, which has neurons connected to inputs, 

and the network is trained to classify the data based on the inputs and information is 

passed via synapses to outputs. The hardware will also consist of an astrocyte network 

which facilitates self-repair.Although the SNN may be susceptible to electronic faults and 

failures after deployment rather than being compromised, the network will repair itself 

when possible. This is referred to as a graceful degradation. This model can 

accommodate all fault models including longer-term drift, as the objective is to address 

all possible faults (electronic and biological) using this model of self-repair, at least to 

begin with. If a sensor or motor fails or if an input neuron fails, the SNN will functionally 

operate, it will lose accuracy and it will become less reliable, self-repair allows graceful 

degradation and this is a new paradigm within SNNs. This model can support hard faults 

such as neurons failing within the network. As long as the SNN is reliable, the longevity 

and increased operational lifetime of this self-repair may have huge benefits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.1 A large scale neuro-glia network. 
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 4.6 Summary 

Fault tolerance and current models of self-repair are based on redundancy. A biological 

model of self-repair was implemented in software with promising results. However, when 

emulating this model on hardware there are additional hardware constraints that must be 

considered. A neuro-glia network is two networks running in parallel. Implementing a 

neuro-glia network (i.e. an SNN with neurons and synapses having self-repair capability) 

on hardware is challenging. This chapter reviews current fault models, current fault 

tolerance and other methods of repair in hardware and how NoCs have provided a 

solution for the high levels of connectivity. Additionally, it reviews possible faults and 

discusses how a neuro-glia network, a network connecting an SNN with astrocytes is a 

viable method of self-repair. 

 

Exploring an NoC approach for neuro-glia networks, is a promising prospect. As NoCs 

are flexible, support many PEs, and are intrinsically parallel while maintaining low 

overhead and high performance. It is the development of the network to exploit these 

traits which remains difficult. The plausibility of supporting a large-scale neuro-glia 

network in hardware is plausible using network on chip technology. The neuro-glia 

network has the advantage of having a slow communication speed, thus allows some 

room to reduce the area overhead within the network itself and balancing the throughput 

of the network with the overhead it must incur. Using a hierarchical topology, allows vast 

numbers of PEs to connect and allows room for development of individual protocols for 

the astrocyte network. The network will be developed with the overall goal of self-repair 

in mind, using a hierarchical topology, adaptive NoC routers and efficient communication 

protocols. 
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 Chapter 5: Local communication: Astrocyte to neuron communication using 

a ring NoC 

 5.1 Introduction 

This chapter introduces a novel interconnect topology for providing the local 

communication between astrocytes and neurons in a neuro-glia network. Using a low-

level NoC hardware communication architecture, information can be exchanged between 

astrocytes and neurons. This work extends the H-NoC SNN paradigm which was not 

developed to support scalable Neuro-glia network hardware. While H-NoC currently 

provides scalable communication for the SNN, the contribution in this chapter is 

facilitating scalable communication between astrocyte cells and the SNN. This novel NoC 

interconnection scheme for communicating e-SP enables a significant number of 

astrocytes to communicate with neurons within a minimal area constraint. 

Implementing a neuro-glia network in hardware is a difficult challenge. Astrocytes 

implemented within the network can provide a fine-grained distributed repair process 

within a neural network. The communication infrastructure consists of a vast network that 

must take into account the number of connections between two separate networks with 

different communication protocols. The local level communication between the astrocyte 

and synapses has two individual aspects of communication:  

 Normal SNN activity  

 Interactions between large numbers of spiking neurons and astrocytes via synaptic 

connections.  

In effect, the aim is to facilitate efficient and scalable communication between an astrocyte 

and a SNN. This is to allow self-repair capabilities in the SNN as the astrocyte modulates 

synaptic activity. When neurons stop firing due to faulty synapses, the astrocyte increases 

the PR across healthy synapses to restore functionality to clusters of neurons. This can 

be applied to existing SNN approaches by implementing an astrocyte in hardware and 

communicating between the astrocyte and neurons. 

This chapter aims to provide an overview of this biological self-repair process where 

subsequently this self-repairing capability is investigated in hardware. This chapter also 
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provides an overview of the interactions and communication exchange between neurons 

and astrocytes, this being a local communication exchange. An outline of this novel 

topology and communication protocol for astrocyte to neuron communication in hardware 

is also provided which enables scalable neuro-glia networks to be implemented in 

hardware. 

 

A ring topology was implemented to facilitate communication between a single astrocyte 

and 10 neurons: hereafter referred to as a H-NoC neuron facility. The ring topology 

reduces area overheads in communicating with the ten neurons and associated synapses 

and this comes at the cost of increased latency. The ring topology affords a smaller area 

overhead as the parallel bus is reduced to a serial signal. This reduces the number of 

wires required to transmit the signal from the astrocyte to the synapses. The signal takes 

longer to transmit however, this does not impact the astrocyte because the astrocyte to 

neuron speed of communication is a slow changing signal. Therefore, reducing area 

overheads exploits the slow transfer rate.  

 

FPGA results demonstrate that the new ring topology provides a good trade-off between 

low area/interconnect wiring overhead and communication speed for the relatively slow-

changing data between astrocyte and neurons. 

 

This chapter provides the following:  

1. The challenges including the vast number of connections regarding local 

communications in a neuro glia network;  

2. How the astrocyte facilitates repair at a low level and how a ring NoC can be used to 

exploit the inherently slow astrocyte communication; 

3. The advantages of using a ring NoC as an interconnect for local communications in 

neuro glia network;  

4. The overheads of using NoC technology to provide a scalable interconnect for neuro-

glia networks. 
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 5.2 Network design challenges and constraints 

The connectivity requirements in a typical SNN causes networking issues because of the 

complexity of connecting all the neurons. In a simple neural network where all neurons 

are connected, this can be seen in Equation (5.1). 

 

Number of connections = 𝑁𝑠 ×  𝑁𝑛 (5.1) 

 

Where Ns = number of synapses and Nn = number of neurons. 

This is a network of neurons and synapses where each neuron is connected. Coupling a 

SNN and an astrocyte requires a larger communication protocol between the astrocyte 

and each neuron as seen in Equation (5.2). 

 

Number of connections = 𝑁𝑠 × 𝑁𝑛 + 𝑁𝑠 (
𝑁𝑛

𝑁𝑎
)  × 𝑁𝑎 + 𝑁𝑎  (5.2) 

 

Simplified as:    2(𝑁𝑠 × 𝑁𝑛) + 𝑁𝑎 

 

Where: Ns – no.of synapses. Nn – no.of neurons. Na – no.of astrocytes 

 

The wiring complexity of this design imposes a large connectivity constraint on the design 

of a communication protocol and the number of wires required induces a huge area 

overhead. Therefore, reducing both the complexity and the area overhead (number of 

wires) using a ring topology in NoC, provides a simple and area saving solution. 

The challenge is to provide a solution, capable of combining the two networks: a neural 

and astrocyte network. Thus, the communication protocol must support the network 

performance whilst reducing complexity and area overheads.  

The main constraint is the number of astrocytes in a network that bi-directionally couple 

to synapses. As the number of astrocytes increase, the number of connections increases 

linearly. Coupled with communicating using different data types e.g. events and numerical 

values and varying communication speeds, the networks complexity increases. The 

challenges and constraints can be summarised as follows: 
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 Complexity of the network: the wiring complexity for a large-scale neuro-glia 

network requires a vast area overhead.  

 Communication time scales: neurons communicate via spike events, these are 

quick exchanges typically in orders of KHz. Astrocytes communicate via numerical 

exchanges, continuous but a much slower exchange of bio-chemicals signals. The 

timescales vary as astrocytes communicate in order of seconds. 

Therefore, the communication protocol must adhere to the constraints above. Due to the 

slow exchange of information within the astrocyte network, throughput can be reduced 

with the focus on reducing area overheads. Therefore, a topology that uses a serial 

communication protocol with less wiring is suitable, i.e. it has sufficient time or ‘slack’ to 

ensure all astrocyte to neuron signal exchanges can be communicated within the correct 

time. 

 

 5.3 Neuro-glia network repair 

A faulty synapse is modelled by a rapid drop in PR at its associated synaptic sites which 

results in silent or near silent neurons. Research has suggested that astrocytes can detect 

faulty synapses associated with silent neurons [11]. This fine-grained repair can be 

achieved by successively increasing the PR on surrounding healthy synapses and this 

process restores the faulty neuron to its pre-fault firing activity: the astrocyte increases 

PR of the healthy synapses which in turn restarts the learning process resulting in the 

potentiation of PR. The potentiation of PR (repair) re-starts the firing activity of the neuron. 

Within this process glutamate is released from the presynaptic dendrite. 2AG is released 

by the postsynaptic dendrite and triggers the oscillation of Ca2+ in the astrocyte. Ca2+ and 

IP3 signals provide astrocytes with communication channels. This process also activates 

the e-SP and DSE signals which mediates the PR of the synapse. Fig.5.1. from chapter 

2, shows a high-level model of repair. 

 

C1 and C2 contain tripartite synapses.  In scenario (A) both neurons are firing with zero 

faults. In scenario (B) N2 has stopped firing due to faulty synapses. From here the 
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feedback signals e-SP and DSE can be observed. As mentioned, N2 has stopped firing. 

The DSE stops but the astrocyte e-SP feedback is still active due to N1 still remaining 

active. The e-SP begins to increase, and this leads to an increase in PR across all 

associated synapses. The weights of the remaining healthy synapses of C2 which leads 

to a restoration of the firing activity to N2. N2 can repair until near pre fault levels of firing 

activity [15]. Table 5.1 shows an overview of the astrocyte signalling values within a 

neuro-glia. 

 

 

Fig.5.1 Computational astrocyte model. N1 and N2 depict neurons and A1 an astrocyte; 
e-SP and DSE are excitatory and suppressive feedback signals [15]. 

 

Table 5.1 Astrocyte signals and values (for information purposes not related to 
hardware). 

Signal Signalling Value 

e-SP 0 to 200% 

DSE 0 to -250% 

Pr 0 to 1 

Ca2+ 0 to ~ 1 microMolar per Synapse 

IP3 0 to ~ 2 microMolar per Synapse 

2AG 0 to ~ 0.02 microMolar 



82 

Simply put, if there are two neurons firing, when one neuron stops, the excitatory signal 

provided by the astrocyte (e-SP) is maintained by the neighbouring neuron and this 

initiates the repair process [15]. Therefore, achieving a self-repair paradigm within a SNN 

can be realised by the interaction with a nearby astrocyte and their control over the PR of 

healthy synapses. The increased complexity of the signalling between the astrocyte, 

synapses and neurons provides the capability to sense and repair synaptic connections, 

where the astrocyte regulates the degree of repair. Astrocytes are also connected via 

intracellular signalling routes (gap junctions) which allow the secondary messenger IP3 

(inositol trisphosphate) to pass through, thereby allowing astrocytes to communicate with 

each other thus providing a distributed repair-decision making capability. At an abstract 

level, one can view astrocytes as a high-level network which exercises plasticity over 

neural networks, with interactions between both networks occurring via the direct and 

indirect signalling pathways. 

 

Progress has been made in modelling the astrocyte process [81] and its interactions with 

SNNs [15]. These models are limited by the computational resources and the 

performance of simulations. Implementing astrocyte cells within existing hardware is 

difficult due to the vast size and complexity of the astrocyte mathematical models. There 

have been a various applications using astrocytes in both Neuromorphic circuitry [120], 

[121]  and within digital hardware devices [83], [85], [122], [123]. However, progressing 

neuro-glia computational function requires the implementation of scalable hardware 

where neural and astrocyte networks must work together in parallel. Neurons spike and 

communicate to other neurons while astrocytes support this communication and the self-

repair mechanism within a neuro-glia network.  

 

SNNs have also been implemented using FPGA hardware. The level of parallelism 

exhibited by hardware improves the SNN performance over that of software models along 

with lower power and area overhead. Therefore, hardware emulation has made it a 

promising prospect to experiment with self-repair on a SNN using a bio-inspired model of 

astrocytes. 
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 5.4 Low-level neuro-glia interconnect 

This section describes a low-level NoC interconnect based on a ring topology, which 

focuses on the excitatory signal (e-SP) which is activated in the astrocyte when there are 

faulty synapses: this is hereafter referred to as the astrocyte-NoC. Within a neuro-glia 

network, e-SP increases the PR of healthy synapses which restores the neuron firing 

activity. Extending on H-NoC, this paradigm presents a scalable method to support large 

Neuro-glia network hardware implementations. H-NoC currently provides scalable 

communication for SNN activity, but not for astrocytes in a neuro-glia network.  

 

Facilitating a low-level communication construct between a network of astrocyte cells and 

a SNN can be realised using a ring-topology as discussed in the introduction to this 

chapter, section 5.1 and this is discussed further in section 5.4.1. Implementation of a 

neuro-glia network in hardware, must consist of two parallel aspects:  normal SNN activity 

and interactions between astrocytes and large numbers of spiking neurons via synaptic 

connections. The low-level communication between an astrocyte and neurons must 

happen in parallel to SNN activity and in a non-interfering manner. In effect, the aim is to 

facilitate communication within and between astrocytes and the SNN network, while 

forming a single unified neuro-glia network. Neurons communicate with a sequential and 

event-driven method whereas astrocytes communicate continuously at a much slower 

rate. Astrocyte data is numerical in value and for the purpose of precision the bit resolution 

in the present case is 64-bit [124].  

 

To adhere to the constraints of the computational model of repair, it is necessary to adapt 

the hardware. A “close” hardware model implements the computational model using 64-

bit precision. However, this provides a paradoxical problem, regarding insignificant data 

exchanged at a less demanding throughput compared to the rate of spike events. The 

biological solution is to do this at a slow continuous timeframe which could cause a lot of 

traffic and congestion within the network. Fig.5.2. outlines the major signals 

communicated in a neuro-glia network: the astrocyte cells (stars) and neurons (circles) 

and the astrocyte network is depicted by the dashed star in the centre. This is a small 

astrocyte network with 5 astrocytes each with two pre- and post- synaptic neurons. This 



84 

network underpins the interactions and communication exchange between neurons and 

astrocytes (A-N communication) and between astrocytes (A-A communication).  

#1

#m

Neuron

Astrocyte

e-Sp

Neuron spikes

DSE
IP3/CA2

 

Fig.5.2 Neuro-glia network outlining the major signals within the network. 

 

The inter-astrocyte and low-level astrocyte-neuron communication uses a separate 

communication infrastructure. H-NoC supports SNN activity, whilst the astrocyte-NoC 

supports astrocyte activity and communicates the essential data to H-NoC. These 

networks must function in parallel and exchange appropriate data as required. As 

previously mentioned, H-NoC is a 3-D hierarchical infrastructure consisting of a Node 

Facility, Tile Facility and Cluster Facility. At this lowest level, ten neurons are directly 

connected to a node router, and the topology used in the node is point to point (star). This 

topology allows PEs and neurons direct connection to the node router. From an abstract 

viewpoint, it allows higher throughput when the rate of information exchanges is critical. 

Each neuron spike is received by the node router as a packet [79]: the Node router 

therefore registers every spike. These packets are received in a non-intrusive manner 

from the node router. This is due to the inclusion of an extra output port within the node 

router. It is from this point that the astrocyte-NoC reads the packets (spikes) and 

communicates with the astrocyte process. Fig.5.3. shows an overview of the two 

communication processes. The SNN communicates using spikes which are events and 

the astrocyte is a continuous numerical value. The 2D boxes are the tile facilities and the 
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circles are the neurons. The blue loop is neuron communications, these are spikes which 

occur in the neurons and are sent to each node and tile router respectively via an 

up/downstream within H-NoC. The purple indicates the astrocyte process. Due to the 

nature of the e-SP signal, throughput is not a key requirement, the process is slow and 

gradually changes in time, therefore, the tile router in H-NoC sends data to the astrocyte 

tile router and this communicates in one way to the neurons. The hardware design must 

accommodate two very different communication protocols.  

 

Fig.5.3 Neurons vs astrocyte communication. Two separate protocols within the same 

network. HNoC has three routers; at the lowest level neurons spike and go to the Neuron 

facility, blue indicates the ring within the astrocyte-NoC, this communicates back to the 

neurons. 

Within H-NoC, the most efficient and least complex level to implement the astrocyte 

communication, is from the tile to the node router. The tile router within H-NoC duplicates 

the data packet (spike) it has received and sends it to the astrocyte-NoC which forwards 

this e-SP signal to the neurons. H-NoC spike events continue uninterrupted during this 

process and the astrocyte-NoC does not impact on traffic data load in the H-NoC. In the 

next section this will be talked about in greater detail. 

 

 5.4.1 The astrocyte process in hardware 

The astrocyte process consists of two 2-AG generators and an astrocyte core. Fig.5.4. 

shows an overview of the astrocyte process which is made up of two 2-AG generators. 
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The spikes are received from the neurons and the 2-AG generators create DSE and 2-

AG. The 2-AG is received in the astrocyte core which subsequently outputs the e-SP 

signal which controls PR within the synapses. The spikes from neurons 1 and 2, are de-

packetized and re-packetized in an appropriate format so they can be directed into the 2-

AG generator to produce DSE and 2-AG/e-SP.  

 

Fig.5.4 2-AG generator communicating to the Astrocyte producing e-SP. In hardware the 

astrocyte process consists of two separate 2-AG generators, these are connected to the 

neurons and take spikes as inputs. They produce the signals 2-AG (glutamate) and DSE. 

The 2-AG from all (in this case two) 2-AG generators is directed into an astrocyte core 

which produces e-SP. This is sent back to the neurons/synapses. 

 

The e-SP signal is also broadcast to each synapse and therefore it may be viewed as a 

global signal within a node facility. This means that it may be the most challenging signal 

to scale due to its one-to-all connectivity. To address the scalability issue of the e-SP 

signal the ring topology is investigated as this permits broadcasting, but with an increased 

latency dependent on the number of packet hops. Given the slow dynamics of the e-SP 

signal (changes infrequently over seconds), one can trade-off higher latency for fewer 

routing connections (serial pathway). The ring topology enables this trade-off. A ring 

topology is used to address two key low-level issues within the neuro-glia implementation; 

(1) reduce the number of physical wires per node facility and (2), exploit the slower 

communication speeds of the biological e-SP signal (i.e. spike events are typically 2-3 

orders of magnitude faster in exchange rates). The ring topology has previously shown 

benefits in area-speed trade-offs for SNN hardware [125]. Therefore, the e-SP 

communication is based on a ring or daisy chain topology for scalability and exploits the 
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one-to-many global communication between the neurons to traverse in a ring fashion 

around all 10 neurons in a node tile of the H-NoC, see Fig.5.3. 

 

The synapses of the node are interfaced with the astrocyte core using an ‘e-SP comms’ 

module. This module consists of an ‘e-SP Tx’ transmitter block and several ‘e-SP Rx’ 

receiver blocks (one connected to each neuron) which communicate via a serial link. The 

e-SP packet is serially propagated through each e-SP Rx module via the ring topology 

enabling all 10 neurons to receive and store the e-SP data value. The astrocyte-NoC is 

indirectly connected to ten neurons via a node router. It displays the connectivity between 

H-NoC neurons and the astrocyte core. The neurons (shown as #1 to #10) are connected 

via ns synapses, (where ns is the max number of synapses per neuron). The astrocyte 

NoC is implemented at the same level as the Tile Router in H-NoC. Here the spikes are 

directed to both the Tile router in H-NoC and formatted to be directed into the astrocyte 

core. The astrocyte core has one e-SP Tx module which is serially connected to the 10 

e-SP Rx modules connected to each neuron. This is one data line, from the e-SP Tx to 

the first e-SP Rx module. The e-SP will be traversed back to the synapses in this manner. 

This shows the two separate networks (H-NoC and the astrocyte-NoC network) 

interacting at the lowest level and can operate independently. This means the spikes and 

astrocyte communications can operate concurrently. The node router is responsible for 

receiving the spikes and forwarding packets based on the address within the header. The 

node router packetizes the information and the routing engine directs them to the tile 

facility or to the neighbouring neurons within its Node facility.  

 

In H-NoC, the e-SP packet is 64-bits in length which is significant in size and not practical 

for every neuron within each node router to have a dedicated 64-bit bus. For example, 

ten 64-bit buses would require around 640 wires to communicate e-SP to each neuron. 

This is highly inefficient. Therefore, a serial communication structure allows the use of 

one wire for communicating e-SP is adopted here. Reducing the path to a single serial 

link means the e-SP packet is serialized using a Parallel in Serial out (PISO). There is an 

‘e-SP Tx’ block and this receives a 64-bit value from the astrocyte core and produces a 

1-bit bus consisting of a 66-bit serial transmission. This information is forwarded through 
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a single wire to the ‘e-SP Rx’ block. The e-SP signal is communicated in a serial fashion 

on a single line thereby, reducing the number of buses and wires required.  

 

 5.4.2 Packetisation of the e-SP signal 

The payload within the ‘e-SP comms’ packet size is vast (64-bit). This causes an 

increased number of wires or a larger bus used to communicate information as the size 

of the payload correlates with the packet size. The ring topology minimizes the overhead 

induced by the reducing the size of the bus. The e-SP packet is decoded and sent serially, 

using one wire or a 1-bit bus to communicate from the astrocyte back to the 

neurons/synapses. The serial message will be sent to all neurons and associated 

synapses. Although the trade-off is speed of communication with a higher latency, there 

is no traffic congestion caused by the ring approach due to the information eventually 

making its way to associated synapses at each of the neurons.  

 

The e-SP is a 64-bit value the astrocyte core sends to the neurons. While this is significant 

it still maintains precision and accuracy when compared to computational models of 

repair. H-NoC uses a 48-bit packet which can be seen in Fig.5.5. with a 1-bit header, 

target address and source address. The source address includes both the node address 

and the “Neuron Position”. The neuron position indicates which neurons within the node 

facility have fired. It is from this packet that the information is directed to the astrocyte 

core. 

[47:44] [43:14] [13:0] 

Header Target Address Source Address 

  

 

 

[13:10] [9:0] 
 

Node Address Neuron Position 
 

 

Fig.5.5 H-NoC packet description. This is a typical packet breakdown in H-NoC, the 

packet is 48-bits in size and has a header and target address which preludes the payload 
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or source address. This payload consists of a node address and the neuron/s that have 

fired within a node, the time of spike is included in the packet. 

The e-SP signal is created by the astrocyte core from the signals received from the 2-AG 

generators. Each 2-AG generator receives spike events and produces signals, DSE and 

2-AG. The 64-bit value which represents the e-SP is then packetised in the e-SP Tx 

module. To maintain simplicity, there is a start bit, the payload (which is the 64-bit value 

from the astrocyte core) and an end bit. The ‘e-SP Tx’ within the astrocyte NoC performs 

parallel to serial packetisation and the ‘e-SP Rx’ performs serial to parallel de-

packetization and storage. The e-SP packet is shown in Fig.5.6.  

 

[65] [64:1] [0] 

Start Bit e-SP Payload (64 bit) End Bit 

 

Fig.5.6 The e-SP packet in closer detail. This is a typical packet in the astrocyte-NoC. It 

is significantly larger than the H-NoC packet due to the size of the e-SP payload. It has 1 

start bit and 1 end bit. 

This packet format includes a start bit which indicates the start of the e-SP value 

communicated from the e-SP Tx module to the e-SP Rx modules. The e-SP value is held 

in the payload and the start bit indicates there is an e-SP signal to be communicated. The 

e-SP Tx module, a parallel to serial converter or PISO, sends the value in a series of bits. 

The series of bits then traverses through the flip-flop and into a shift register which stores 

the e-SP value. When the e-SP value is sent from the e-SP Tx, it is as a serial 66-bit 

packet. This can be seen in Fig.5.7. where the e-SP Tx module has a one- bit bus or a 

single wire output. 
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After the packet is sent serially, the e-SP Rx block uses a series of flip flops to control the 

input and output from the e-SP Tx block. The start bit indicates the beginning of the e-SP, 

which starts the process and the first bit starts the D flip-flop. This bit is set to ‘1’ and so 

when both the start-bit, and the clock is a ‘1’ the JK flip-flop receives a ‘1’. The next 64 

bits is the e-SP payload which is sent to the 64-bit shift register where it can eventually 

be outputted to the neurons. The packet contains an end bit, to indicate the end of the 

signal and this bit is always set to ‘1’ to ensure that when both the end bit and the clock 

is a ‘1’ the JK flip-flop receives a ‘1’ and the output toggles. The JK flip-flop has two inputs, 

the D flip-flop and the shift register output, where the output of the shift register feeds 

back to form one of the JK flip-flop inputs. When both the JK flip-flop and the clock are 

‘0’, the NAND gate is a ‘1’ which indicates to the JK flip-flop that there are no more bits 

and the JK flip-flop stops any activity in the shift register. Therefore, this ring topology is 

only active when bringing communicating the current e-SP value. 

 

The e-SP Rx module communicates the e-SP signal to every other e-SP Rx forming a 

ring topology. The ‘e-SP Rx’ requires a start bit to begin the transmission of the bits 

through the buffer and an end bit to indicate the end of data to be communicated and 

subsequently the ‘e-SP Tx’ will stop sending data. The area overhead of the serialised 

block is 65 LUTs and 132 Slice Registers and de-serialised block is 34 LUTs and 67 Slice 

Registers. Fig.5.8. shows the ‘e-SP Rx comms’ block in closer detail. 

Fig.5.7 The e-SP Tx and Rx modules. This is the e-SP comms module as a whole. The 

block consists of one Tx module and multiple Rx modules. This creates the ring topology 

as the Tx transfers and the Rx modules receive information. 
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Fig.5.8 The e-SP Rx module. This is the Rx module, it consists of two flip flops, a D and 

JK respectively, an AND gate, a NAND gate and a shift register. This receives the 64-bit 

signal from the Tx module and passes the data serially to every neuron within the ring. 

 

 5.4.3 The e-SP signal 

Fundamentally, the e-SP packet size depends on the bit-resolution of the astrocyte 

model. The e-SP signal value is currently 64-bits to maintain precision. The e-SP comms 

module is made up of one ‘e-SP Tx’ logic block used to interface the astrocyte core with 

the neurons within H-NoC. The e-SP data is converted into a series of bits using a parallel 

to serial conversion. This series of bits is then forwarded to the ‘e-SP Rx’ block, with a D 

flip-flop simply acting as a buffer and its output is then fed into a JK flip flop and the shift 

register. The serial data is passed through to a shift register (i.e. First in First out (FIFO)) 

consisting of a series of registers (each neuron from #1 to #m has a FIFO). The size of 

shift register depends on the size of the packet. NR. NR = 64 with a 64-bit packet. The JK 

flip-flop within the ‘e-SP Rx’ is utilised to automatically stop the shift register from receiving 

data bits when the FIFO has received all of its 64-bit data. The size of the packet has a 

direct impact on the size of the shift register. Due to a direct connection from the astrocyte 

to all the neurons in a single node facility there is no need for an address as the data 
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across all synapses is identical. There is a start bit and end bit, required to switch the 

transmission on or off. 

 

 5.5 Results 

This section outlines the test bench and provides performance analysis of the ring-

topology for the ‘e-SP comms’ block. The area overhead of the e-SP communication is 

compared with the H-NoC and an astrocyte core to demonstrate its compactness. It is 

also assessed for area utilization across various packet sizes.  

 

A. Testbench and setup 

The H-NoC neuron facility, astrocyte core and astrocyte NoC ring have been captured in 

VHDL and synthesised for a Xilinx Virtex-7 XC7VX485T-2FFG1761C FPGA evaluation 

board using Xilinx Vivado 2016.2. The NoC ring topology with astrocyte to neuron 

communication has been validated on the FPGA Xilinx ARTY 35T evaluation board.  

 

The astrocyte accepts packets in the form of 8 bits (a spike would be represented as 

binary “00000001”)this is because the astrocyte is developed using C++ and converted 

to VDHL using Vivado synthesis software which uses buses for all signals (part of 

reducing the astrocyte), and produces a number of signals (2-AG, DSE, Ca2+ and IP3) in 

this chapter the important signal is the global e-SP signal. As previously mentioned, the 

‘e-SP comms’ block is interfaced with the neurons using a single wire in a ring topology 

this is shown in Fig.5.9 as the signal main_output_final_top. Fig.5.9. shows a high-level 

RTL schematic in Vivado indicating the Tx and Rx modules. The Tx receives the e-SP 

signal, performs parallel to serial conversion and sends it to the first Rx module. 
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Fig.5.9 “e-SP comms” module. This is the e-SP Tx and Rx modules high-level RTL 

schematic in Vivado. The H-NoC parallel to serial is the Tx module and the FIFO serial 

data is the Rx module. The Tx module receives a 64-bit bus (main_packet_esp_in) and 

has a single wire output (data_bit_out). This is sent to the Rx which has a 1-bit input 

(bit_stream_esp_in) and one output (output_final) which traverses the ring. 

 

B. Simulated operation of low-level e-SP comms module 

Fig.5.10 is a simulation of the low-level e-SP comms module where the test bench was 

designed for an astrocyte to accept spikes from neuron 1 and 2. The astrocyte would then 

send the 64-bit e-SP value. The e-SP data packet is sent to the e-SP Tx module and 

outputted serially. This would then be received by the buffer store which accepts 66-bits 

including the start and end bit: this process extracts the e-SP value. 
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Fig.5.10 “e-SP comms” module showing the simulation. This is a simulation using Xilinx 

Vivado software. At the top of the figure, in green are the astrocyte signals, and in red the 

e-SP signal in 64-bits. The temp [65:0] is the PISO receiving a 64-bit packet 

(data_packet_in) and outputting a 66-bit string of bits, this is the data_bit_out, this is the 

Tx module. The buffer_store and the buffer_store_temp is the Rx module, which take the 

66-bit packet and formats it to get the e-SP signal value. The yellow and gold lines are 

used to show how the value traverses the ring without a distortion of data, each 

buffer_store coupled with a buffer_store_temp indicates a new module in the ring. The 

simulation occurs over a long period of time to ensure there are no dropped bits or 

distortion of the signal, this is after 373,528,415,000 ns or 373.5 seconds. 

 

C. Analysis of the e-SP comms module 

The area overhead incurred by the e-SP comms block is defined in Table 5.2, compares 

area overhead associated with the astrocyte and H-NoC neuron facility and the area 

utilization is shown in terms of percentages due to the size of the astrocyte core.  
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Therefore, comparing against the astrocyte in terms of area overhead, the H-NoC neuron 

facility is around 3.34% in terms of LUTs and 4.51% in terms of slice registers. The e-SP 

is much lower at 0.61% in terms of LUTs and 1.2% in slice registers which supports spike 

communications. This correlates with the size of the e-SP packet data i.e. the size of the 

packet generated by the astrocyte, which at this point in time is a fixed value. In terms of 

scalability the number of look up tables (LUTs) and slice registers were used to determine 

how the ‘e-SP comms’ block scaled in comparison to both the area consumed by the H-

NoC Neuron facility and the astrocyte core. This is to show that relative to the astrocyte 

the area incurred due to the inclusion of the e-SP comms is minimal. 

 

Table 5.2 Area analysis “e-SP comms” 

 

Component LUTs (%) Slice Registers (%) Device Utilisation (%) 

Astrocyte 16,182 - 16,305 - 4.33 

H-NoC Neuron- Facility 540 3.34 735 4.51 0.28 

e-SP comms 98 0.61 198 1.21 0.06 

 

In terms of both LUTs and slice registers (area utilization) the ‘e-SP comms’ block is very 

small compared to the H-NoC neuron facility with which it communicates. Fig.5.11 

compares the ring and star topologies using area overhead and latency metrics. The star 

has a greater overhead and lower latency and the ring has a higher latency but a lower 

area overhead. 
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Fig.5.11 e-SP comms module scalability. This compares ring and star topologies using 

area overhead and latency metrics.  

 

Fig.5.12. shows the LUT resource usage of the e-SP comms as the network scales, with 

reference to the H-NoC neuron facility. The e-SP comms block scales more linearly, this 

is because the e-SP comms has fewer resources and is a more simplistic design than the 

H-NoC element which demonstrates that the e-SP comms is not a limiting factor in scaling 

neuro-glia networks. Fig.5.12. shows the number of LUTs when using a 64-bit resolution. 

This is the absolute maximum bit resolution and could be considered the limiting factor. 
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Fig.5.12 e-SP comms module vs H-NoC neuron facility (scalability). This graph shows 

area overhead using LUTs. The e-SP comms module is compared against the H-NoC 

neuron facility as they scale up over various array sizes. 

 

Fig.5.13. shows the number of LUTs (area utilization) in the e-SP comms block, across 

different packet sizes (e.g. between 8 to 64 bit). The graph shows that the area overhead 

incurred when the e-SP comms and H-NoC neuron facility, as this represents, one e-SP 

module to one H-NoC neuron facility, are scaled up from an array size of 10x10 to 50x50. 

This shows the LUT (area) has a gradual increase and can be reduced by minimizing the 

e-SP packet size; i.e. optimize the astrocyte core. This indicates that the e-SP comms 

block incurs a conservative area overhead (0.61% compared to the astrocyte). Due to the 

worst-case scenario of 64 bits being used (as the astrocyte core uses 64-bit precision), it 

is important to realize that a reduced packet size would result in the area overhead 

decreasing. 
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Fig.5.13 Area utilisation scaling the e-SP comms module. This graph shows the area 

overhead incurred by comparing the array size and then comparing packet size. The 

packet size is important as it can be noted here, that as the packet size increases in 

number of bits the area overhead required to support this packet size increases 

exponentially which has a huge impact on scaling the network. 

 

The results show that the area overhead incurred by adding the ‘e-SP comms’ is not 

significant compared to H-NoC and therefore the proposed approach enables large 

neuro-glia networks to be realised. From the graphs above, scaling and packet size are 

huge influencers of area overhead when supporting a large-scale network. As the network 

scales it is more area efficient than the H-NoC neuron facility, however, reducing the 64-

bit packet is the key to reducing the area footprint. As throughput is not the key factor 

within the neuro-glia network, a ring topology is used to reduce the area overhead, as it 

has lower area overhead trading off increased latency. As the network scales, the array 
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size dictates the area incurred and compared to a H-NoC neuron tile, where the ratio of 

e-SP comms to neuron facilities is 1:1, the e-SP comms scales better and supports a 

large-scale network. However, it can be observed that 64-bits is redundant and that 

reducing the size of the packet would have a huge impact in terms of area and throughput. 

Overall, a higher latency allows a ring topology to take advantage of the slow changing 

astrocyte signal and reduce the area overhead whilst maintaining 64-bit precision. 

 

 5.6 Summary 

In this chapter a novel NoC ring topology to support e-SP signals between astrocytes and 

neurons has been proposed. This ring topology takes advantage of a slow changing 

astrocyte process used in self-repairing networks, and sacrifices throughput as it uses an 

area efficient design. Implementing the ring topology for e-SP communication within a 

neuro-glia network allows a low area design, which could be further reduced by reducing 

the packet size from the astrocyte core. Due to the vast size of both individual networks, 

the number of PEs (neurons and astrocytes) and number of communication signals 

increase exponentially. The interfacing of the two completely different networks is a 

complex challenge. Previous work on high level astrocyte to astrocyte communications 

[126] and this low level astrocyte to neuron/synapse communication indicates a ring 

topology NoC provides a scalable solution to the interconnect challenge. The use of the 

ring topology in the NoC provides a good trade-off between reducing area/wire overheads 

and relaxing the communication speed of data provided by the astrocyte to 

synapses/neurons. 

 

This novel NoC interconnection scheme enables communication from the astrocyte to 

neuron/s within a single neuron facility in H-NoC. This allows the e-SP signal to be 

communicated and enables a significant number of astrocytes to communicate with 

neurons within a minimal area constraint. This process will enable self-repair emulation 

(as shown in chapter 6) with a distributed and fine-grained nature without a central 

controller. This is based on the biological and computational models of previous works. 

The results show that trading off throughput for area efficiency is ideal because of the 

slow changing astrocyte. Compared to the astrocyte for relative size, the e-SP ring incurs 
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a small overhead and scales efficiently compared to the H-NoC neuron facilities. The size 

of the packet is essential but implicates the area. As the network scales the resources to 

support the 64-bit signal from the astrocyte scales exponentially, however, reducing this 

packet size would significantly reduce the area further. This work has been explored 

further in chapter 6, implementing the e-SP ring in a SANN (with self-repair capabilities in 

a SNN with an astrocyte cell in hardware). This low-level interconnect in addition to the 

high-level astrocyte communications provide a platform for developing a neuro-glia 

interconnect for future inspired computing paradigms regarding self-repair strategies in 

hardware.  

 

The e-SP signal is considered an astrocyte-neuron signal, as it and DSE are 

communication signals between the astrocyte and neurons. In the next chapter, inter-

astrocyte signals (from astrocyte-to-astrocyte) signals are explored. This allows both 

high- and low-level communication signals to be realised in a neuro-glia network using 

NoC technology. This chapter focuses on the self-repair mechanics or fine-grained aspect 

of repair whereas, the next chapter focuses on the distributed aspect of repair, and how 

it affects neuro-glia networks, and how to efficiently communicate IP3 efficiently using an 

astrocyte core. 
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 Chapter 6: On-chip communication for neuro-glia networks: Global NoC 

 6.1 Introduction 

Neuro-glia networks have a vast number of connections between glial and neural cells. 

As discussed in Chapter 3 and 4, NoCs can be implemented in order to address scalability 

issues when there are significant numbers of PEs requiring connectivity. In Chapter 5 a 

NoC ring-topology was used to interconnect astrocytes with neurons and this interconnect 

exploited the local slow changing astrocyte values communicated to neurons and 

reducing area implementations in hardware.  

A key communication requirement in the repair process is the global exchange of data 

between astrocytes themselves, e.g. inter-astrocyte (astrocyte-to-astrocyte). Neuro-glia 

networks become more complex due to additional connectivity between multiple 

astrocytes which adds to the existing interconnect challenge.  

 

IP3 is one of two signals (the other being Ca2+) communicated directly from astrocyte to 

astrocyte, see chapter 5, Fig.5.2. This is part of the global repair process; as IP3 oscillates 

in the cell, it triggers Ca2+ releases between astrocyte cells. To address this global 

interconnect challenge, a novel NoC-based astrocyte tile router is applied to a cluster of 

astrocytes. This implementation provides a reduced area/power communication 

infrastructure in hardware where the cluster comprises of eight astrocyte cells.   

This chapter explores using this Global NoC approach and consists of three novel 

aspects: 

 

1. Astrocyte tile router and ring topology; the inherent slow changing astrocyte signal 

is exploited by serialising the data with a ring topology in order to reduce 

area/power overheads for scalable implementations. 

 

2.  An IP3 accumulator; this is a low-level logic system consisting of logic gates, 

multiplexors and counters. All IP3 signals in a given cluster are accumulated and a 

single adder is used to add 64-bit packets (from the astrocyte cluster), average 
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and communicate this information back to the astrocytes cells. This is the first time 

this type of low-level system has been applied to astrocyte communications. 

 

3. An update manager implements a novel token-based control dynamic centred 

around the frequency of astrocyte communications. Using this novel token system, 

there are two variables which control the update rate (no. of tokens and time) within 

the tile router. This ensures the astrocytes remain in sync, the clusters update 

frequency can be changed in the future as required to suit variable communication 

rates. The dynamic scheduler manages token requests and will enable the start of 

the IP3 process, after a certain number of requests or a time period has passed. 

 

This contribution addresses the key challenge of providing a scalable communication 

interconnect for global requirements by contributing to a multi-level NoC ring topology. It 

extends the work in Chapter 5 as it provides a solution to a complete neuro-glia network 

and explores the crucial intra-astrocyte communication signals. Note: this contribution 

has been published by the author [127]. 

 

The Chapter is organised as follows: Section 6.2. discusses the scale of the neuro-glia 

network challenge and section 6.3 outlines the novel astrocyte tile router. Section 6.4. 

presents results and analysis while section 6.5. provides a conclusion. 

 

This chapter provides the following:  

1. The ratio of neurons to glial cells and why this is important; 

2. The challenges of creating a scalable interconnect to support the vast number of 

connections regarding global communications in an astrocyte network;  

3. How an astrocyte router is used at a global level and how it can be used to exploit 

the inherently slow astrocyte communication; 

4. The advantages of using a dedicated astrocyte NoC router for interconnect for 

global communications in neuro glia network, including an update manager and 

dynamic scheduler; 



103 

5. The overheads of using NoC technology to provide a scalable interconnect for 

neuro-glia networks. 

 

 6.2 Neuro-glia networks: Biology 

Astrocyte communication is both local and global and is analogous to a small-world 

network graph. A small-world network is a communication phenomenon found in 

networking where groups or clusters of nodes exchange information and can be found in 

real world environments such as social networks, navigation [128] and biology [129]. A 

recent example such as cryptocurrency, and peer-to-peer networks, has been shown to 

demonstrate small-world principles [128]. As the network scales the communication 

infrastructure scales efficiently. The features of a small-world network emphasise many 

local communication clusters and fewer global connections between clusters. A neuro-

glia network can be considered a small-world network denoted by signal exchanges on a 

large and intricate scale between astrocyte and neuron networks. This section provides 

an overview on astrocyte to neuron ratios in the brain, how these cells communicate and 

self-repair within biological neuro-glia networks.  

 

 6.2.1 Neurons and glia cells 

The ratios between neurons and glia cells in the brain largely differ. According to recent 

literature there is a 1:1 (glia to neuron ratio) [13]. This is the suggested overall ratio in the 

brain, however, this ratio of glia to neurons varies e.g. the cerebral cortex is around 1:3 

and the cerebellum 1:4 glia to neurons. However, as 20% of glial cells are astrocytes 

within each region, the 1:1 works out at around 1:5 (of astrocyte to neurons) in the brain, 

1:15 in the cerebral cortex and 1:20 in the cerebellum [13]. Table 6.1 shows approximate 

ratios of glial cells to neurons cells and astrocyte cells to neuron cells in different regions 

of the brain. Table 6.2 shows a comprehensive review on how the ratio has changed as 

our technology and understanding of the brain has evolved. However, this is an estimate 

and there is still a significant debate regarding the issue in the literature [13] with a large 

variance in the reported ratios, as shown in Fig.6.1. Undoubtedly, the glia to neuron ratio 

is diverse and difficult to define. However, in this chapter the ratio used is 1:10 astrocyte 
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to neurons, as was the case in Chapter 5. The work within this chapter uses eight 

astrocytes where each astrocyte is interfaced with 10 neurons and each astrocyte tile 

router accommodates 8 astrocytes which allows 80 neurons per astrocyte tile facility: also 

it is easier and more efficient to average this number and divide using a shift register. This 

will be discussed in more detail later in the chapter. 

 

Table 6.1 Neurons to glia cells (based on region) 

Brain region 
Glial cells to neurons 

(Ratio) 

Astrocytes to neurons (approx. 

Ratio) 

Human brain 1:1 1:5 

Cerebral cortex 1:3 1:15 

Cerebellum 1:4 1:20 

 

 

 

 

 

Fig.6.1 Glia/neuron ratio [13]. 
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Table 6.2 Neuron to glia ratios [13]. 

 

 

 6.2.2 How the brain facilitates self-repair 

As previously stated in Chapters 2 and 5, local communication pathways connect the 

astrocyte directly to neurons. In addition, a global information exchange occurs between 

astrocyte. This neuro-glia structure can be viewed as two separate networks, where 

pathways are in place to support the information exchanges of both neurons and 

astrocytes. Neurons exchange information with astrocytes and other neurons via spike 

events. Astrocytes communicate using separate signalling pathways (global pathway) 

and glio-transmitters (non-spike events). Spike events between pre- and postsynaptic 

neurons stimulate signalling exchanges between astrocytes. A neuron, in a very basic 

and simplified manner, is made up of dendrites (inputs) and an axon (output). When a 
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spike occurs, there is an intracellular chemical reaction which takes place and astrocytes 

can modulate or mediate these reactions [11]. This results in the increase or decrease of 

the PR in associated synapses. This self-repair behaviour is the signalling process which 

facilitates repair decisions at a low or local level. This however, increases the complexity 

and signalling processes within the network. Astrocytes are connected via gap junctions 

or intracellular routes which allow IP3 exchange. The astrocyte network can be viewed as 

a high-level network, working in parallel with the neural network, and is responsible for 

regulating synaptic plasticity in the neural network. 

 

 6.2.3 NoC for neuro-glia network 

The H-NoC hierarchical approach assists in identifying a communication network for 

astrocytes which communicate on a local and global scale. Using routers to distinguish 

between these local and global communications, they can be separated and viewed in a 

hierarchical manner. This not only supports parallelism, allowing data to be passed from 

neuron to neuron and astrocyte to astrocyte, but also the interactions between neurons 

and astrocytes. Neurons communicate through spike events whereas astrocytes 

communicate with each other through the exchange of IP3. These are very different 

communication patterns and speeds which must be adhered to when realizing a neuro 

glia network. Inspiration from using different topologies, such as ring, establishes the 

motivation for exploring the trade-off between reduced communication bandwidth and 

area overhead from larger buses/wiring.  

 

 6.3 Astrocyte tile router overview 

The H-NoC hierarchical approach assists in identifying a communication network for 

astrocytes which communicate with other astrocytes via a separate communication 

protocol to that of astrocyte-neuron communication. The global astrocyte-to-astrocyte 

channel communicates IP3 data, whereby astrocytes function by balancing and sharing 

their levels of IP3 to ensure that there is enough IP3 to facilitate repair and maintain normal 

functionality. Within an astrocyte, IP3 can be considered as a pool of water connected to 

a reservoir, this reservoir extends to neighbouring astrocytes and maintains similar levels 
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of IP3. When the IP3 level drops in one astrocyte, the other reservoirs exchange IP3 to 

provide an equal balance across all pools. The main communication paths are outlined in 

Fig.6.2.  

 

This process balances the glio-transmitters across all associated and neighbouring 

astrocytes and provides the network with the ability to detect changes in IP3 and Ca2+. 

Therefore, astrocytes influence and affect each other, removing the need for a central 

controller. It is this distributed and complex communication which allows self-repair on a 

global scale to occur. 
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Fig.6.2 Communication signals within a neuro-glia network. 

 

 6.3.1 Global communication in a neuro-glia network 

The astrocyte receives spike stimulus from the SNN, event data is communicated from 

H-NoC to the astrocyte via an additional output port within the node router of H-NoC. This 

is shown in the previous chapter and is used to send information to both the tile router of 

H-NoC and the astrocyte. The node router of H-NoC sends the data simultaneously to 

both the tile router within H-NoC and to the astrocyte core. The astrocyte model used, 

consists of two 2-AG generators and an astrocyte process; received spikes from neurons 

stimulate the release of 2-AG and the astrocyte produces the IP3, DSE and e-SP signals, 
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see Fig.6.2.  The IP3 is a global communication signal within the astrocyte network, and 

is shared across neighbouring astrocytes where all astrocytes strive to balance out the 

levels of IP3 across the cluster of astrocytes as a whole. As the IP3 oscillates there is a 

flux of Ca2+ between astrocytes which ensures this balance is maintained. Therefore, at 

an abstract level, the spike events from H-NoC can trigger changes in an astrocyte’s IP3 

level, and this value must be communicated to other astrocytes (global communication). 

Within Chapter 5 the local communication consists of communicating e-SP from the 

astrocyte, the e-SP Tx interfaces with the astrocyte core, and sends information down to 

each e-SP Rx through the ring topology. This chapter focuses on the global signal using 

the same astrocyte model and communicating the IP3 data between all astrocytes within 

a cluster.  

 

Each astrocyte is therefore connected to the astrocyte tile router through a channel which 

exchanges IP3 data, this is a requirement for global communication. The astrocyte router 

has two main modules, an IP3 accumulator and an update manager. The router as a 

whole will: 

(1) Receive IP3 level data from up to eight astrocytes. 

(2) Calculate the average IP3 level for all eight astrocytes (carried out by the IP3 

accumulator) and communicate this back to all astrocytes.  

The astrocyte core represents IP3 as a 64-bit packet [85]. The rate at which IP3 changes 

is much slower than spike events; typically, 2-3 orders of magnitude slower. The key 

objective for hardware is to balance the physical area per astrocyte tile router facility while 

also meeting real-time requirements of the IP3 exchange and update process. The 

astrocyte cluster facility is also an important component of the overall architecture of the 

astrocyte router. The ring topology in NoCs has previously shown benefits in area-speed 

trade-offs for both SNN and neuro-glia hardware [87], [125], [130].  

 

This ring topology allows eight astrocytes within a cluster to communicate IP3 within an 

astrocyte network. In biology, 4-8 astrocytes are generally connected [131], however, 

eight astrocytes allow a 3-bit shift register to divide and average the IP3 from all 

astrocytes. As there are 4-8 astrocytes, in biology, eight astrocytes were chosen, one, 
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because this corresponds with numbers seen in biology and two, a 3-bit shift register is 

needed to divide by eight which is part of the design consideration. This router consists 

of a router and novel ring topology, a novel IP3 accumulator, a novel update manager 

consisting of a token system and dynamic scheduler. This design exploits the slower 

communication speeds of astrocytes. Using the biological timescale, the astrocyte router 

exchanges IP3 data using a time-multiplexed approach based on a ring topology. Each 

aspect will be described further in the next sections. 

 

 6.3.2 Astrocyte tile: Inter-router module and topology 

The 64-bit precision constraint on the IP3 data size is significant and becomes area 

inefficient if implemented using traditional channels of parallel-lines, i.e. a 64-bit channel. 

The astrocyte tile router is comprised of three main components, an adder, a ring interface 

and an update manager. Each astrocyte is attached to an inter router which manages the 

parallel to serial conversion using a Parallel-In Serial-Out (PISO) module and a ring 

transmission interface.   When an astrocyte has an updated IP3 value it releases an IP3-

vld signal to the inter-router, this is followed by its 64-bit IP3 value. The ‘inter router’ 

accepts this data value and consequently requests a token from the update manager, this 

will be explained in the next section in more detail. Due to the potential for numerous IP3 

values (changing within a short timeframe) from a number of astrocytes, it is important to 

manage the token requests and the communication process, this will allow the astrocytes 

to remain in sync. The inter router will request a token from the update manager and the 

update manager accepts the request if the token is free and then grants the token to the 

requesting ‘inter router’. This process starts the chain of events regarding the IP3 pathway 

and is the main process regarding global communication in an astrocyte network. When 

an ‘inter-router’ token has been granted, the ‘inter router’ will serially transmit its IP3 data 

to the IP3 accumulator via a PISO contained within each ‘inter router’ unit. This serial link 

enables a reduction in the physical wiring because a traditional bus may consist of eight 

64-bit buses/512 physical wires, the serial line reduces this to 8 single lines (one for each 

astrocyte) containing all the IP3 data. The inter-router sends its value serially and 

simultaneously transmits a signal to inform the next ‘inter router’ to subsequently send its 

data to the IP3 accumulator. Each ‘inter-router’ sends its data serially whilst sending a 
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start signal to the next ‘inter-router’. This data propagates through the IP3 accumulator, 

adding each astrocytes IP3 value and sending back an average value of IP3 to the 

astrocytes. The resulting new IP3 value is serially propagated back through each ‘inter 

router’ facility using the ring topology. The IP3 data is sent on a 64-bit bus to the ‘inter 

router’, and then sent serially via a single data wire.  

 

Overall, the astrocytes send data to the astrocyte tile router and the IP3 accumulator 

manages the incoming data from all astrocytes via a multiplexer, this data is contained in 

a packet, for the packet layout see Fig.6.3. Each IP3 value is in a 64-bit packet, astrocyte 

#0 contains the 64-bit packet and is appended with a single start bit. Each 64-bit packet 

is numbered from 0 to 63, as shown below in Fig.6.3.  

 

Fig.6.3 Packet layout 

 

The astrocytes send data synchronously with a 1 clock cycle delay between each 

astrocyte, thus an 8-bit mux is used. This multiplexer switches between all eight 

astrocytes IP3 data and is controlled by Counter #1. Counter #1 starts with the first input 

and will count to 8 before resetting to 0 and controls Mux # by switching from 000 (zero 

in binary) to 111 (7 in binary). Each input is directed, in a synchronised fashion to a full 

adder, adding all eight astrocytes IP3 values. Initially Mux #2, a 2-input mux, defaults at 

0. As the first bit comes in to the B port of the adder, A is 0, this guarantees the first bit is 

added correctly. This is also controlled by Counter #1. The adder accumulates all eight 

IP3 values and forwards this to the ‘Divider’ where a shift-by-3 operation is performed to 

complete the IP3 averaging process. A shift-by-3 is used to divide the IP3 by eight, 

averaging and outputting the average IP3 to all astrocytes. This is controlled by Counter 

#2 which will count the first 3 bits and discard them. Fig.6.4 shows the IP3 accumulator in 

more detail as it manages and accumulates 8x64 bit serial values. The output of 

multiplexer is connected to a serial adder circuit. 
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Fig.6.4 IP3 accumulator 

Using a ring topology minimizes wiring overhead which is dictated by the large packet 

size. However, using a serial data line allows the ring topology to maintain connectivity 

with all astrocytes. A single data line is used between each astrocyte and the ‘inter-router’ 

whereas the ‘inter-router’ uses four separate data lines to communicate back and forth 

with the astrocyte. The ‘inter-router’ also communicates to the update manager (requests 

tokens) and IP3 accumulator (sends current IP3 value). Each inter router has four wires to 

communicate back and forth with the astrocyte. It also has four additional wires, one to 

request a token, one to send IP3 to the IP3 accumulator and two to communicate IP3 the 

new IP3 value. Inter router #0 has an extra wire for receiving the token from the update 

manager to begin the update of IP3 within the ring topology. 

The ‘Ring I/F’ interface uses the ring of the inter-routers to communicate the average IP3 

value back to each astrocyte. Fig.6.5 highlights all the input and outputs in regard to each 

‘inter-router’. The ‘inter-router’ manages the values from the astrocytes and keeps the 

astrocyte tile router, this accumulates and averages IP3 values from all astrocytes and 

communicates the resulting information back to the astrocytes within the network. 



112 

Inter Router 
#0

Inter Router 
#1

Inter Router 
#7

Divider IP3 accumulator

ASTROCYTE #0

ASTROCYTE #1

ASTROCYTE #7

1/

Dynamic Scheduler

Token Grant

Astrocyte Tile Router

/1

/8

/8

Token Request

IP3 Data #0

Update Manager
/1

/1

/64
/1

/64
/1

/64

/1

IP3 Strobe

IP3 Data

/1
Ring 
data

Ring 
strobe

R
in

g 
I/

F

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

/1

Ring data

Ring strobe

/64
/1

/64
/1

/64
/1

/1
/1

/1/1

/1
/1

 
 

Fig.6.5 Astrocyte tile router communications. IP3 from the astrocyte is sent to the inter 

router. The inter router requests a token. If the token is granted, each astrocyte sends its 

IP3 value to the IP3 accumulator. The updated IP3 value is then sent back serially via the 

ring interface to each astrocyte. 

 6.3.3 Update manager and dynamic scheduler 

The update manager is interconnected with eight astrocytes, there is additional flexibility 

to allow more astrocytes to communicate with less astrocyte tile routers if required; i.e. 

increase efficiency and reducing overhead. The importance of the update manager is 

twofold, managing the synchronisation of the input IP3 data from the astrocytes and ‘inter-

routers’ into the accumulator. Secondly, it enables the control of the rate at which the 

update or averaging process is done as IP3 values change very slowly.  

 

To perform a complete update with every astrocyte state would be inefficient.  Therefore, 

rather than perform an average IP3 calculation each time a single astrocyte requests the 

action, the dynamic scheduler provides a means by which to minimise unnecessary 

averaging calculations. This reduces power consumption as the token is released when 

either: 
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(1) A number of token requests(ntoc) from the ‘inter-routers’ has been requested  

or  

(2) A max time period (TDS) has elapsed.  

 

The dynamic scheduler (DS) is connected to an update manager, this manages the 

requests from ‘inter-routers’ connected to astrocytes which upon a change in IP3 in an 

astrocyte, it requests a token. Only after one of these thresholds is met can a computation 

or update be performed. Fig.6.6 depicts a flow chart detailing the DS process.  
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Fig.6.6 Update manager DS flow chart. 

 

The update manager waits for an initial token request. When the first token request is 

received, the value of ntoc is incremented by 1 and a timer starts, T=0. This is the start of 

the update manager flow. The update manager will remain inactive as long as the current 

time (T) is under TDS. If the update time window has expired, without receiving another 

token request the update will start. TDS is a variable threshold and this threshold is set 

when the first token request has been sent regardless of the number of subsequent token 
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requests. This ensures that the system updates periodically with changes in IP3. If there 

are three or more token requests within this time period (TDS) the DS will enable an update 

of the IP3 values by granting the token to ‘inter-router #0’. Thus, the DS aims to reduce 

the frequency of the update based on the two conditions.  

 

The update manager holds a single token and only when this token is released the update 

process start. The token system is used to manage updates because the values of the 

IP3 will change frequently and result in more frequent IP3 updates. This change of IP3 is 

insignificant at times and does not warrant a complete update, to balance this, when three 

requests, the threshold has been met and it is deemed adequately urgent to perform the 

update this balances updates and keeps the astrocytes in sync. If there are three token 

requests (Ntoc) within this time frame the IP3 will update: three was chosen as an arbitrary 

starting value for testing purposes. It would then be comparable to using six and nine 

tokens, which yields more results and greater insight in less steps e.g. in 2’s (2, 4, 6, 8, 

10). If there is one token request the update will not occur until the update window expires. 

The update window TDS is based on timescales of 10ms, 100ms and 1 sec. These values 

were chosen again for testing purposes, 1 sec is comparable to biological timescales and 

reducing this by magnitudes of 10, would give an ideal testing timeframe. These are the 

max update rates of IP3, where the refresh/update rate is not immediate but rather 

dynamic within the time constraints of the update window.  

 

This DS process allows scope for tweaking either for a more power efficient model or a 

model based on a higher throughput. It can also be altered to release the token using less 

or more requests or by changing the time threshold. These variables can be optimised to 

provide either a more power efficient or higher throughput strategy. 

 

 6.4 Results and analysis 

This section outlines the test setup and provides area-power performance analysis of the 

astrocyte tile router. The performance of the router used in the ring topology of the 

astrocyte is compared with the astrocyte core itself (computation component) and the 
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spike-based H-NoC (interconnect) to demonstrate its compactness and hardware 

scalability.  

 

The H-NoC neuron facility, astrocyte cell and proposed astrocyte router have been 

described in VHDL and synthesised for a Xilinx Virtex-7 XC7VX485T-2FFG1761C FPGA 

evaluation board using Xilinx Vivado 2016.4.  

 

 6.4.1 Performance: Astrocyte tile router 

The area and power estimates are obtained using Vivado, which estimates area using 

LUTs and slice registers. Power is compared using both the static and dynamic power 

respectively. Table.6.3 outlines the area overhead of the astrocyte tile router and 

compares it with the astrocyte core, H-NoC neuron facility and “e-SP comms”.  

 

In Table 6.3, the astrocyte core (i.e. computation component) is used as a benchmark to 

compare area-size of the various interconnect components.  A single H-NoC neuron 

facility (Node router) consumes 3.2% in terms of LUTs and 4.5% in terms of slice registers 

of the FPGA device. In comparison, the “e-SP comms” interconnect is very compact with 

only 0.6% of LUTs and 1.2% in slice registers. The astrocyte tile router is 2.2% in terms 

of LUTS and 4% in terms of slice registers which is larger but still more compact than the 

area of the H-NoC Node router. 

 

Table 6.3 ‘Astro-Router’ block evaluation 

Component LUTs (%) 
Slice 

Register 
(%) 

Astrocyte Core 16,305 - 16,182 - 

Node Router (H-

NoC) 
527 3.2 735 4.5 

AstrocyteTileRouter 365 2.2 651 4 

e-SP comms 99 0.6 199 1.2 
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There is a small area overhead incurred by the astrocyte tile router and the 8 inter-routers. 

These inter-routers act as signal managers, directing the IP3 from the astrocyte core to 

the astrocyte tile router, each tile consumes 70 LUTS and 64 slice registers, and the inter-

router uses 27 LUTs and 55 slice registers.  

 

 6.4.2 Scalability analysis 

In regard to scalability, Fig.6.7 shows the interconnect area overhead for various sizes of 

neuro-glia network implementations. There are two relatable aspects a single neuron 

facility.  

1. A single tile router (astrocyte).  

2. A single ‘e-SP comms’ block.  

In one implementation of a neuro-glia network, one tile router (astrocyte) connects to eight 

neuron facility (ten neurons) where each neuron facility has one ‘e-SP comms’ block. 

Therefore, to emphasise how a neuro-glia network scales, each aspect is scaled and 

compared e.g. array sizes of 10x10 up to 50x50.  

 

Fig.6.7 shows that the astrocyte tile router interconnect is a scalable interconnect solution. 

In each scaled array there is an exponential growth as the network scales, however this 

is expected as its slope is less than that of the neuron facility (H-NoC) and as there are 

10 neuron facilities per 1 astrocyte tile router: the astrocyte network will have less area 

overhead. The X-axis is the number of components and the array size. The two Y-axis 

show the area used up in terms of LUT’s (using a solid line) and slice registers (using a 

dashed line), respectively. The number of LUTs and slice registers increases 

exponentially as the number of tiles increases, this is expected as the network scales. 

One neuron facility of H-NoC and the ‘e-SP comms’ block shows the minimal overhead 

incurred by the ‘e-SP comms’ block. There are ten neuron facilities per tile facility in H-

NoC and each tile facility correlates with a 1:1 ratio of tile facilities (astrocyte). The neuron 

facility and the astrocyte tile router are comparable in size and scale similarly, however in 

one implementation it is one astrocyte tile router to ten neuron facilities. 
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Fig.6.7 Scalability LUTs and slice registers. 

 

These results indicate that there is a very small area overhead when communicating IP3 

between astrocytes and this is important for global self-repair as astrocytes communicate 

using IP3. This helps facilitate a neuro-glia network communication between astrocyte 

cells. The computational model uses double point precision and the astrocyte requires 

this precision to remain faithful to the computational requirements. Therefore, the 64-bit 

data is communicated serially using a ring-topology to minimise area. The results show 

that the area overhead incurred by adding the astrocyte tile router and ‘e-SP comms’ 

interconnect block is small when compared to the size of the actual astrocyte computation 

core. There is one astrocyte tile router to every eight astrocytes and each astrocyte has 

an ‘e-SP comms’ block. This shows the relationship between the interconnection and 

computation, e.g. one astrocyte tile contains eight astrocytes with eight ‘e-SP comms’ 

blocks.  
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 6.4.3 Power analysis with dynamic scheduler 

A power analysis was carried out using time as a variable and then the number of 

iterations, doing so identified a balance between the time and number of iterations per 

each update. Therefore, these results reflect updates within a single astrocyte tile router. 

Firstly, tDS is set to 10, 100 or 1000, that is, an update occurs once per tDS within 1,000ms. 

Table 6.4, compares the power consumed over the course of 1,000 Ms (1 second). The 

quantity tDS is the time interval of each update whilst updating the global IP3 once within 

one tile facility astrocyte. Therefore, 1 update is 2.45 Watts and if we update 10 times 

during this time period the power consumed is 24.56 Watts. One entire update cycle 

consists of adding the IP3 values from each astrocyte. This update process accumulates, 

averages the IP3 and communicates this new value around each astrocyte. Fig.6.8. 

shows that as we reduce the number of updates or iterations for a certain time period, it 

significantly reduces the power consumed: a slower update against the power consumed 

is can be varied to find the best performance metric. Table 6.4 shows that as the update 

period, tDS, increases the power consumed reduces. As the astrocyte is typically a slow 

changing process in the order of seconds, there is scope to reduce the update rate in 

hardware and therefore this will enable the reduction of power to support scalable 

implementations. 

 

Table 6.4 Power analysis with varied tDS 

 

 

 

tDS (ms) 10 100 1,000 

Power 

(Watts) 
245.6 24.56 2.456 
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Fig.6.8 Dynamic scheduler evaluation. 

Furthermore, it is important to explore the power consumed during each update iteration 

and this was carried out using xPower within Vivado 2016.4. Using a typical activity file, 

Table 6.5 outlines the power consumed by the astrocyte tile router compared with the 

astrocyte computation itself, and the ‘e-Sp comms’ block. This demonstrates that the 

interconnect for the astrocyte communication is scalable as it only exhibits ~12% 

(3.071/25.471) of the power used by an astrocyte computation. 

 

Table 6.5 Power analysis 

 

Component 

  (Watts)   

Static Dynamic Total 

Astrocyte cell 0.732 24.739 25.471 

Astrocyte tile router 0.088 2.465 2.543 

‘e-SP comms’ Block 0.074 0.454 0.528 

 

Table 6.6 outlines the power consumed by each individual design; the astrocyte cell, the 

astrocyte tile router and ‘e-SP comms'. This table compares the average for one iteration 

and then scaled for 1, 10, 20, 30, 40 and 50 iterations. This table shows that the low 

power design consumes on average around 2.44 watts per iteration and is broken down 
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further into 1.28w (signals) and 1.24w (data). This design shows a small overhead in 

terms of both power and area. 

 

Table 6.6 Power Analysis of individual components within the astrocyte tile router. 

Component 1 10 20 30 40 50 

Tile Router (Astrocyte) 2.4 24 48 72 96 120 

Tile Router component 1.26 12.6 25.2 37.8 50.4 63 

Inter-router 0.11 1.1 2.2 3.3 4.4 5.5 

TOTAL 3.77 37.7 75.4 113.1 150.8 188.5 

 

 

Fig.6.9. compares the power consumed as the interconnect array size scales. As the size 

of the network scales the power consumption scales linearly, this is preferred as the 

network is expected to be reproduced on large scales. The components required for 

astrocyte communication from Chapters 5 and 6 respectively, are the “e-SP comms” and 

the astrocyte tile router. As the number of tile routers and “e-SP comms” blocks increase 

there is an increase in power. For example, if there are 40 astrocyte tile routers in 

hardware the power consumed will be approximately 100 watts. The “e-SP comms” (in 

grey) shows the power consumption of each individual “e-SP comms” block. However, 

for every astrocyte tile router there will be eight “e-SP comms” blocks, the black line 

represents the total which is one astrocyte tile router and 8 “e-SP comms” blocks. Table 

6.7. shows the breakdown of power consumed by each component and compares the 

interconnect of both the astrocyte tile router and the e-SP comms block with the astrocyte. 

This also shows dynamic and static power consumption. It can be seen that compared to 

the astrocyte the total power consumed is 10x less. With eight astrocytes connecting to 

one astrocyte tile router consuming only 1/10th of the power of a single astrocyte, it can 

be seen that the astrocyte tile router is a good trade-off between area and throughput 

yielding low area and power overheads in comparison to the astrocyte. 
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Fig.6.9 Scalability in terms of astrocyte tile routers. 

 

Table 6.7 Power analysis per component. 

Power analysis   (watts)   
 

Component Static Dynamic   
 

Breakdown   Total 

Power 

Signals Data 

Astrocyte 0.732 24.739 13.989 12.229 

Astrocyte_tile_router 0.088 2.465 1.296 1.253 

e-SP comms Block 0.074 0.454 0.229 0.229 

 

 6.5 Conclusion 

In this chapter a novel astrocyte tile router and ring topology supporting the exchange of 

IP3 signals between eight astrocytes has been proposed. This ring topology is similar to 

that in Chapter 5 and proposes exploiting the slow changing astrocyte process used in 
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self-repairing networks. This allows the overheads such as power and area to be minimal 

as it uses an area and power efficient design that is scalable.  

 

Astrocytes are computationally expensive and therefore demand a lot of resources on an 

FPGA platform. With both individual networks, neural network and astrocyte network the 

number of PEs (neurons and astrocytes) and communication signals is significant in size 

and interfacing the two networks is a difficult challenge. Chapter 5 addresses the vast 

number of communication signals: high level astrocyte to astrocyte communications and 

combining local and global communication protocols. This allows the astrocyte to use 

necessary resources whilst maintaining the low overheads in both area and power to 

provide a scalable solution to the interconnect challenge.  

 

This novel NoC interconnection scheme for communicating enables a significant number 

of astrocytes to exchange data with other astrocytes with minimal area and low power 

constraints. As previously stated each astrocyte is interfaced with 10 neurons and each 

astrocyte tile router accommodates 8 astrocytes which allows 80 neurons per astrocyte 

tile facility. This will enable self-repair within SNN hardware and facilitates the exploration 

of self-repair in electronic systems using a biologically inspired approach. The proposed 

NoC interconnect provides a hardware building block for developing neuro-glia 

interconnect for self-repair strategies. IP3 is an important communication signal from 

astrocyte to astrocyte. This novel interconnect allows eight astrocytes to communicate 

IP3 within an astrocyte network.  

 

This neuro-glia networks exploits the innate slow changing astrocyte signal in order to 

reduce area and power overheads. This chapter provides a scalable interconnect to 

address the above communication and interconnect challenges within neuro-glia 

networks. The chapter also explores this paradigm using a novel NoC astrocyte tile router. 

This interconnect consists of three major novel components within neuro-glia networks 

1. Astrocyte tile router connected in a ring topology 

2. A novel IP3 accumulator 

3. A novel update manager (token system and dynamic scheduler).  
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The next Chapter (Chapter 7), implements the e-SP ring, described in Chapter 5, in a 

SANN (with self-repair capabilities in a SNN with an astrocyte cell in hardware). This low-

level interconnect in addition to the high-level astrocyte communications provide a 

platform for developing a neuro-glia interconnect for future inspired computing paradigms 

regarding self-repair strategies in hardware. 
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 Chapter 7: Application of spiking astrocyte-neuron network using Networks-

on-Chip 

 7.1 Introduction 

This chapter presents an implementation of a robotic controller in FPGA hardware using 

the proposed NoC mechanism. The mobile robot uses a SANN to control motor speed. 

The firing activity of the output neurons are converted into a pulse width modulator (PWM) 

signal, which in turn, controls the speed of wheel motors. Previous results [86] show that 

if the synapses within the astrocyte-neuron neural network are faulty, the network has the 

ability to adapt and repair, thus maintaining the direction and speed. This experimental 

phase was carried out using fault densities of 0%, 20%, 40%, 60% and 80%. Results 

have shown that with up to 80% of faulty synapses, the network can repair and restore 

pre-fault functionality with only a slight degradation of output frequency. This chapter 

focuses on using an e-SP ring where area overhead is the key requirement and latency 

is not a critical requirement, due to the slow astrocyte process in biology. Results 

demonstrate that the output frequency had an average of 5.77 Hz down from 7.27 Hz 

when the network suffers catastrophic failure (80% of faults).  The e-SP ring has a low 

area overhead relative to the astrocyte, 1.68% of the total number of slice registers and 

3.62% of slice registers. 

 

This chapter aims to provide an overview of the self-repairing process in hardware where 

the SANN and the communication exchange between neurons and astrocytes is 

discussed. The main focus is to implement the ring topology and communication protocol 

developed in Chapter 5, thus providing a scalable solution to the interconnect challenge 

within an astrocyte-neuron network. This may be applied to larger networks in the future.  

Results demonstrate that the ring topology provides a good trade-off between low 

area/interconnect overhead and communication speed for the relatively slow-changing 

data between astrocyte and neurons as well as providing a self-repairing capability in a 

real-time application. 
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 7.2 The spiking astrocyte-neuron network 

This section introduces the spiking neuron network (SNN), which when coupled with an 

astrocyte, is a first step in realising the challenges and constraints of an astrocyte-neuron 

network. In the present case, the SNN contains two neurons where each neuron has ten 

input synapses coupled to an astrocyte. The astrocyte mediates synaptic activity and PR 

across all twenty synapses. The hardware architecture includes three facilities – 

probabilistic tripartite synapse [124], LIF model [23], and the De Pitta et al. astrocyte 

model [132].  

 

 7.2.1 An overview of the robotic car architecture 

The robotic car used in this chapter, is based on a SANN. The SANN accepts input neuron 

spikes as stimulus and outputs a spike frequency, which is converted via pulse width 

modulation (PWM) modules and then used to drive and control the speed of the robot. A 

software model of the SANN had been used previously to demonstrate fault detection 

and self-repair.  

 

Fig.7.1 shows two neurons (N1 and N2) firing which results in two the feedback signals 

e-SP and DSE; e-SP is excitatory and DSE is suppressive. C1 and C2 are tripartite 

synapses associated with the neurons which are coupled to the astrocyte (A1). There are 

two scenarios as shown in Fig.7.1 where:  

(A) No faults: all synapses are capable of passing information. 

(B) Faults: a fraction of synapses are damaged and are not capable of passing 

information and N2 has stopped firing.  

 

DSE (the suppressing signal) reduces as N2 becomes silent due to faulty synapses. The 

e-SP feedback signal to synapses associated with N2 increases as N1 remains active. 

This leads to an imbalance of e-SP and DSE as there is an increase of e-SP but DSE is 

reduced within the array of synapses in C2. As a result, the PR of the healthy synapses 

associated with N2 (C2) is increased. This results in the restoration of N2 to a pre-fault 

firing activity. 
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Fig.7.1 Astrocyte feedback. N1 and N2 are neurons and A1, an astrocyte. (A.) shows a 

no faults and (B.) shows N2 as faulty. This shows e-SP and DSE as excitatory and 

suppressive, feedback signals to associated synapses. 

 

Fig.7.2 is an overview of the physical components used to build the car and includes: the 

FPGA hardware with the SANN controller, the motor units and the completed mobile 

robotic car. 

 

Fig.7.2 The FPGA based robotic car. (a). The FPGA device. (b). Motor circuits controlled 

by FPGA. (c). The final robotic car [86]. 
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The FPGA hardware is programmed to execute the SANN where each neuron has 10 

associated synapses. This small network controls the mobile robotic car. With this small-

scale network self-repair can be demonstrated using a real hardware application. Fig.7.3 

is the hardware architecture. The three main components described are: (a) the SANN 

(b) the FPGA connections to the mobile car and (c) the computer interface used to collect 

and monitor signals.  

The SANN is developed on an FPGA and consists of two neurons (Neuron #1 and #2), 

associated synapses and the astrocyte process. The neurons generate 2-AG which splits 

into two signals, DSE which goes to the astrocyte and reduces the PR on all synapses. 

The astrocyte then generates e-SP which increases PR on all synapses. The neurons 

are modelled using a LIF model [86]. The output spike from each neuron, is converted to 

an output frequency by a PWM. Neuron #2 controls the speed of the robot from this output 

frequency. 

 

Fig.7.3 Overview of the hardware architecture. (a). SANN FPGA implementation (b). 

Mobile robotic car. (c). Software used to collect and monitor signals [86]. 
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 7.2.2 The astrocyte process 

Within the SANN, there is a two-tier hierarchy of communication: 

 

I. Low-level communication: when the neurons and synapses interact with the 

astrocyte. 

 

II. High-level communication: Inter-astrocyte communication.  

 

When a neuron stops firing it is considered silent or near silent which is caused by a 

decrease of PR in associated synapses i.e. faulty synapses. Astrocytes detect faulty 

synapses associated with silent neurons and this is referred to as fine-grain detection and 

repair of defective synapses. To facilitate repair the astrocyte increases the PR of healthy 

synapses thus restoring the neuron activity to its pre-fault level. From an abstract point of 

view, the astrocyte within the SANN receives 2-AG from the neuron facilities and this 

outputs the signal, e-SP, to the synapses which serves to modulate synaptic PR. The 

astrocyte model consists of two 2-AG generators and an astrocyte core; spikes from 

neurons produce DSE and 2-AG signals where the latter produces the e-SP signal, as 

seen in Chapter 7. Fig.4.4. 

 

Fig.7.4. shows the hardware architecture with e-SP ring NoC. Within the SANN, there are 

two neurons. Each neuron facility is connected to a synapse facility and an astrocyte 

facility. The astrocyte facility outputs a signal (e-SP) to the synapse facilities and 

increases PR at the pre-synaptic terminal. The synapse facility is based on a probabilistic-

based synapse model and has many input signals which influence PR. The inputs are 

based on input spikes, it receives a signal “signal for the random number generator”, and 

both the DSE and e-SP signals from neuron and astrocyte facilities, respectively. It has 

one output signal (synVarOut), which is connected to the neuron facility [79]. 
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Fig.7.4 Overview of the hardware architecture with e-SP ring NoC. 

 

Within the synapse facility, the PR is regulated by the DSE and e-SP signals. These are 

the signals within biological constraints which act to balance the PR of the synapses. In 

Fig.7.5 there are several graphs to monitor the performance and output of the mobile 

robotic car without faults. This is used to compare against computational simulations [15], 

[133]. The PR is affected solely by the DSE and e-SP and has an initial value of 0.5. An 

input fault enable signal (synVarFaultEna) is used to simulate faults and if this signal is 

high, the PR value is set to 0.1 which is adequate to simulate a fault. 

Within Fig.7.6, there are again several graphs. The PR of the first synapse and the PR of 

the tenth synapse associated with Neuron 2. There is the excitatory e-SP and the 

depressing DSE signals and finally, the output frequency of the neuron, this is the Freq 

(Hz). Results show, as expected, the output spike frequency is maintained, the e-SP rises 

and the DSE falls. Over the time period PR fluctuates half way at approximately 0.25. 
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Neuron 2 and the output frequency controls the robots speed. These graphs enable 

visualisation of the results over a 600s period.  

 

Fig.7.5 Neuron 2 regular activity with no faulty synapses. Various graphs to visualise the 

results and the output frequency over a 600s period. The DSE drops and the e-SP rises. 

 

 7.3 e-SP and the astrocyte neuron network 

The astrocyte releases e-SP to strengthen PR and facilitate self-repair by strengthening 

weights associated with the remaining healthy synapses and the firing activity of the 

neuron is restored.  

Fig.7.6 and Fig.7.7 show the first and tenth PR variation over time of the synapses 

associated with Neuron 2. During the first simulation (Fig.7.6) the e-SP does not go back 

to the synapses and therefore the only signal present at the synapse is DSE; this results 

in a significant depression of PR at all synapses. At 200s faults are injected. Fig.7.6 shows 

there is virtually no self-repair taking place. However, there are faulty synapses. The PR 

in the first synapse drops and the tenth synapses PR partially increases due to the fall in 

the decrease in the DSE signal due to the slower neural firing frequency.  
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Fig.7.6 Neuron 2 faults with no e-SP. 

 

The simulation in Fig.7.7 shows the same set-up as the previous simulation where faults 

are injected into the synapses at 200s. In this case, the e-SP is directed into the synapses. 

The first synapse associated with neuron #2 is faulty. The drop in PR indicates this is a 

faulty synapse and consequently, the output frequency of Neuron 2 falls. As the e-SP is 

directed to the healthy synapses, the healthy synapse PR increases and the frequency 

of neuron #2 begins to recover to a pre-fault frequency. This shows the importance of the 

e-SP signal in facilitating self-repair. 
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Fig.7.7 Neuron 2 faults with e-SP. 

 

Communicating e-SP and DSE are essential within the SANN. The SNN and astrocyte 

network operate in parallel and exchange data continuously maintaining self-repair 

capability. However, the complexity of the astrocyte- neuron coupling takes up significant 

resources in terms of area on FPGAs. Below table 7.1 [86] shows the size of each 

component of the SANN.  

 

Table 7.1 SANN area analysis 
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The overhead within this SANN is a cause of concern as the network increases in size. 

To address this we look to use the low-level NoC hardware communication architecture, 

used in chapter 5 which extended the H-NoC.   

 

 7.4 Self-repair using “e-SP comms” ring 

The SANN is developed using Vivado synthesis tools and due to the Modular nature of 

the SANN it can be broken down into two neuron facilities, two synapse facilities and an 

astrocyte facility. Within this FPGA modular architecture there are 64 bit buses, which is 

a requirement due to the binary precision used for the astrocyte data representation; i.e. 

the astrocyte requires 64 bit precision to remain accurate when compared with software 

computational models. While 64-bit precision does indeed impose a large overhead on 

the communications protocol, it is used so that the system output can be compared 

against the computer simulated models and optimising the area of the astrocyte core is 

not the focus of this thesis. The reduction of the 64-bit precision and therefore optimisation 

of communication overhead is a target for future embedded systems implementations. 

The first step in realising the e-SP with large scale SANNs is to work within a biological 

timescale and so, the ‘e-SP comms’ module was integrated into the SANN. The e-SP 

data comes from the astrocyte and is used as input data to the synapse facilities.  

The e-SP ring takes the e-SP output from the astrocyte and sends it to the associated 

synapses at each neuron. Fig.7.8 and Fig.7.9 show the SANN with the e-SP ring in place, 

under a 0% fault condition and this shows that there is no deviation of results when using 

the ring in the hardware. Both figures show the PR at first and tenth synapses at the 

associated neurons respectively. The DSE is also shown in each. The output frequency 

and the e-SP are shown in red, these signals are directly affected by the e-SP ring. The 

results are plotted using MATLAB.  
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Fig.7.8 Neuron 1 with “e-SP comms” (no faults). 

 

 

Fig.7.9 Neuron 2 with “e-SP comms” (no faults). 
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Fig.7.10 and Fig.7.11 show the same plots as before but with faults injected into the SANN 

during simulation. Fig.7.10 has 40% faults injected in synapses associated with Neuron 

2 and Fig.7.11 has 80% of faults injected. This shows that the e-SP ring works within the 

NoC and provides self-repair with no deviation from the original design. 

 

 

Fig.7.10 Neuron 2 with “e-SP comms” (40% faults). 
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Fig.7.11 Neuron 2 with “e-SP comms” (80% faults). 

 

Table 7.2 shows that the e-SP ring is 1.68% of the total number of slice registers and 

3.62% of slice registers relative to the astrocyte. 

 

Table 7.2 e-SP ring relative area analysis 

  
Slice 
LUTS 

Slice 
Registers Block RAM Tile  DSPs 

Astrocyte 11,394 11,666 5 42 

Synapse & 
Neuron 9,865 10,383 0.5 45 

DSE generator 4,353 4,688 0 14 

FMMM 65 80 4 0 

PWM 
Controller 21 20 0 0 

          

e-Sp ring 191 422 0 0 

 



138 

Table 7.3 and Table 7.4 compare the output frequency of neuron #1 and neuron #2 with 

and without the e-SP ring. Table 7.3 demonstrates that the average output frequency of 

the simulation vs the hardware, this was to show there was very little difference when 

applied to hardware. This was carried out for 0%, 40% and 80% of faulty synapses [124].  

These simulations were recreated with the e-SP ring in place to show there was very little 

difference in the average output frequency. The e-SP ring converts a 64 bit packet in a 

serial transmission, this could cause latency if there is a delay in the e-SP getting back to 

the synapses. The average output frequency has very little deviation of results (+/- 0.2), 

which is caused by a slightly different averaging result. This shows that the e-SP ring 

does not incur latency in the original design, this is because of the slow changing 

astrocyte process. The e-SP changes very slowly and the e-SP ring successfully carries 

the e-SP to the synapses within this timescale. 

 

Table 7.3 Average frequencies of different platforms under various fault densities (Hz) 

 

 

 

 

 

 

 

Table 7.4 Comparing average frequencies with and without the e-SP ring 

  Average output 
frequency 

Average output frequency with 
e-SP ring 

Fault 
Density 

Platform Neuron 1 Neuron 2 Neuron 1 Neuron 2 

0% Simulation 7.19 7.2 N/A N/A 

 Hardware 7.28 7.27 7.28 7.27 

40% Simulation 7.38 6.81 N/A N/A 

 Hardware 7.37 6.88 7.38 6.88 

80% Simulation 7.38 5.68 N/A N/A 

 Hardware 7.37 5.75 7.37 5.77 

 

  Average output frequency 

Fault Density Platform Neuron 1 Neuron 2 

0% Simulation 7.19 7.20 

 Hardware 7.28 7.27 

40% Simulation 7.38 6.81 

 Hardware 7.37 6.88 

80% Simulation 7.38 5.68 

 Hardware 7.37 5.75 
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 7.5 Fault Scenarios 

There are a number of areas that a fault can occur which are outside of the current fault 

model: 

 A fault affects the neuron, and not the synapse: 

If there is a fault in the neuron, the network considers this a silent neuron, with all 

synapses connected to the neuron as faulty. This model used 2 neurons and 10 

synapses, due to this small network, when the neuron fails the entire network fails. The 

astrocyte increases PR in healthy synapses but as there are no healthy synapses the 

model cannot recover and the robot stops completely. This is not a representative of a 

large network, this is because in the model there are simply two neurons. 

 The astrocyte or astrocyte network routers fail: 

This fault was addressed in section 7.3. Using a dedicated router within the neural 

network, has the potential to have faults. Within this network there are potential faults in 

the astrocyte or astrocyte router, this is part of the future work in realizing a large scale 

neuro-glia network. Due to the network having an e-SP signal in a single wire from the 

astrocyte to synapses, if the signal cannot be communicated, there is no self-repair in the 

network. However, repair is not only part of astrocyte to neuron interactions, but 

astrocytes to astrocyte communication would enable the network to detect changes. 

Using a small-scale network, provides a small scope, this is addressed in section 8.3, 

Realizing a large-scale neuro-glia network in hardware. Future work focused on a larger 

scale would allow observation of faults within the astrocytes and the routers, as this work 

has focused on the astrocyte to neuron interaction. 

 A “loud” synapse, i.e. one that constantly excites: 

A “loud” synapse fault would be an increased initial PR within each faulty synapse, this 

means that the neuron would fire more quickly and the output frequency would be higher, 

and therefore the robot would move more quickly. This was tested as the PR was set high 

on many of the synapses, the expected output was to observe the network regulating and 
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adjusting the PR so these faulty synapses would reduce PR and the robot would stabilise. 

However, with the absence of DSE there was no way of reducing the PR. The e-SP signal 

works by increasing the PR, typically there is an equilibrium acting on the synapse. The 

e-SP increases PR and DSE decreases PR, they cancel each other out, when the neuron 

stops firing, the DSE to the synapse is reduced, the e-SP is increased and thus the PR 

increases. The hardware model does not use the DSE on the signal as a “loud” synapse 

wasn’t initially tested. Further work on the software model should be carried out and then 

the hardware can use the DSE signal to decrease the PR and repair. 

 

 The sensors or motor drivers fail: 

The motor was removed to simulate a fault. However, because the motor is controlled by 

the output frequency of the neuron, there was no feedback and the neuron continued to 

fire. This is expected, in this small scale set-up there are two neurons and two motors to 

control speed. Within this experiment, the damage to the synapses showed self-repair 

within the neural network but the motor is external, and controlled by the output of the 

network. An interesting aspect would be using a large scale network with sensor inputs. 

These sensor inputs would affect the output of the neural network. This is a long term aim 

of the neuro-glia network, it is employed in harsh environments and as faults occur to 

synapses, neurons or astrocytes or even further, faulty sensors the network will recover 

partially, and the overall aim is a graceful degradation of the SNN. Unfortunately this fault 

model cannot be simulated on such a small network, especially within this SNN as the 

motors have no influence on the network. 

 7.6 Summary 

This chapter presented a robotic controller in FPGA hardware using the proposed NoC 

mechanism from chapter 5. A ring topology for e-SP was used within a SANN and results 

show that with up to 80% of faulty synapses the network can repair and restore pre-fault 

functionality.  Results show that the area incurred by the e-SP ring is 1.68% of the total 

number of slice registers and 3.62% of slice registers relative to the astrocyte, this is a 

tiny overhead incurred in terms, of area. Table 7.4. Compares the output frequency of the 

neuron #1 and neuron #2 with and without the e-SP ring. This had shown there was little 
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to no difference in the output frequency caused by the e-SP ring. The results indicate that 

using a biological timeframe the e-SP ring can operate without inducing latency, as the 

average output frequency has very little change (+/- 0.2). This will be vital for future 

implementations of large-scale astrocyte networks. The fault models above were 

experimental and could be considered as part of future work, the objective of this work is 

to address faults at a local level within the SNN which is the focus of this thesis. It is 

however, interesting to view the model as a whole and consider various fault scenarios, 

upon realizing a large scale neuro-glia network. 

  



142 

 Chapter 8: Conclusion and future work 

 8.1 Conclusion 

The brain is a large complex system with an overwhelming number of tiny biological 

processes. Yet, it is the most complex and powerful computing paradigm, the most 

complex and powerful known to science. Whether it’s processing huge amounts of 

information or solving complex problems incredibly quick, it is a highly adaptive system, 

constantly learning and powered by an area efficient and low power infrastructure. The 

brain is a dense parallel system consisting of a complex network of cells. The possibility 

of creating a complex system capable of the traits we observe in the human brain, is 

beyond the imagination, yet with each step we get a bit closer. Biological traits such as 

fine-grained repair and distributed repair-decision making are performed in the brain via 

astrocytes. Astrocytes are glial cells within the brain and have provided an insight into a 

more complete and complex paradigm. Astrocytes mediate synaptic plasticity; thus, 

astrocytes have the capability of dynamically increasing or decreasing the PR of a 

synapse, this facilitates self-repair. This neuro–glia network paradigm addresses the key 

self-repair requirements of fine granularity and distributed decision making which is a 

constraint of current self-repair techniques in hardware. 

 

In particular, computational models of such repair have been successfully captured and 

applied to SNNs. As such, neuro-glia networks have been applied computationally and 

this paradigm has only begun to be explored in hardware. This PhD thesis provides insight 

into neuro-glia networks in hardware, providing a scalable interconnect to communicate 

local and global signals, exploring the astrocyte and its internal processes in hardware. 

The scope of the research which forms this PhD, focused on providing a scalable NoC 

interconnect for self-repair using SNNs on hardware. Chapter 5 implemented a low-level 

ring topology which communicated e-SP from astrocytes to neurons, which modulates 

the PR of synapses. The low-level ring allowed an astrocyte process to be implemented 

within a current SNN framework (H-NoC), which was never intended to have self-repair, 

this scalable design provides the roadworks for astrocyte to neuron communication. This 

allows astrocytes to facilitate repair in current SNN hardware. Chapter 6 focused on 
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providing a global astrocyte network with a scalable interconnect for global network 

communications. An astrocyte tile router was designed to exploit the inherent slow 

communication of astrocytes and allow clusters of up to eight astrocytes to communicate 

IP3 in an efficient and scalable manner. This used low level hardware to average and 

distribute the global IP3 when there were changes in one astrocyte. The router used a 

dynamic scheduler and token system to provide an efficient update process which 

balanced the number of requests and prioritised efficiency over throughput. These low-

level scalable interconnect strategies were implemented to communicate important 

signals within a neuro-glia network, these are required for self-repair. 

  

This thesis consisted of six chapters, each with a role to play in identifying the constraints 

of a neuro-glia network. Using NoC inspired interconnects to overcome the complex 

connectivity and scalable interconnect issues of a neuro-glia network. Each chapter is 

summarised below: 

 

Chapter 2 provided a review of neural networks, astrocytes and self-repair. This explored 

neurons and astrocytes and their role in computational models and showed how 

biochemical reactions can be used within computational neural networks. As SNNs and 

their applications develop, a biologically inspired self-repair provides a more complete 

and deeper understanding of processes within the brain where astrocytes provide fine 

grained and distributed self-repair. When realising a neuro-glia network in hardware there 

are scalability issues, implementing a common networking paradigm NoC was identified 

as a scalable interconnect solution within the next chapter. 

 

Chapter 3 reviewed and opened with the scalability issues within large scale neuro-glia 

networks and this chapter reviewed the application of the NoC paradigm as a hardware 

interconnect. NoCs have been used to provide large scale neural networks with 

scalability. These same techniques significantly reduce area and power overheads when 

compared to typical bus and SoC interconnects. NoCs are also highly effective at 

supporting high throughput and dense communication infrastructures such as SNNs. Due 

to the vast interconnectedness of a neuro-glia network, this presented an interconnect 
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problem (in terms of both power and area overheads). Therefore, using NoCs provided a 

solution to realize large networks and dense communication procedures. This approach 

has many benefits for neuro-glia networks:  

 Provided a scalable interconnect 

 Low area overhead implementations (compared to traditional topologies) 

 Reduced complexity 

 Flexibility in design and development of a network 

 

A NoC is essentially parallel in nature, this allowed some room to reduce the overheads 

within the network itself. Using a hierarchical topology, vast numbers of PEs are 

connected within a network and therefore, this allowed space for development of an 

astrocyte network. NoCs are based on networking engineering principles, “Route packets, 

not wires”. The next chapter focused on how to implement a neuro-glia network using a 

NoC interconnect.   

 

Chapter 4 Provided a review on fault methods and repair. Self-repair is a desirable trait 

for electronic devices and this chapter reviewed current methods of hardware redundancy 

and self-repair. To date, current self-repair or fault tolerant approaches come at large 

overheads. A neuro-glia network would allow a SNN to be used within a harsh 

environment, this would provide an application in mission critical areas which is capable 

of prolonging it’s operational lifetime and will continue to operate even when it suffers 

faults such as losing sensors. 

 

Chapter 5 presented how a NoC ring topology could be used to provide e-SP 

communication within a neuro-glia network. This interconnect was a low-level scalable 

ring topology which communicated e-SP from an astrocyte to neurons. This was achieved 

by using serial data to communicate the signal to all neurons within a single Node Facility 

of H-NoC without impeding the SNN and its typical spike communications. The chapter 

provided an overview of this self-repair process and applied this process in hardware. It 

provided an overview of the interactions and communication exchange between neurons 

and astrocytes at the local level of communication exchange. A neuro-glia network is vast 
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in size and had both neuron and astrocyte processes, with each of these, the number of 

neurons, astrocytes and communication signals grow. The complex nature of interfacing 

two completely different networks has complications. Using a ring topology provides a 

good trade-off between reducing area/wire overheads and a slower rate of 

communication provided by the astrocyte. 

 

This novel NoC interconnect provided the astrocyte with a way to communicate with 

neurons and provided the signals necessary for self-repair. It is regarded as essential for 

a SNN to facilitate self-repair in parallel to the normal operation of a SNN as the SNN 

focuses on high throughput, as a result faults would be detected using a separate process 

which cloned the packet. Moreover, the developed low level interconnect supports local 

communication from a high level astrocyte to a low level neuron/group of neurons. NoC 

provided a scalable interconnect solution with minimal area overhead providing the 

communication which is capable of facilitating self-repair at a fine grained and distributed 

level. This contributes a low-level NoC ring topology for astrocyte to neuron 

communication. 

 

Chapter 6 presented a NoC interconnect solution which addressed the global IP3 

communication signal in an astrocyte network. The IP3 interaction, is a communication 

protocol within a neuro-glia network. This is an astrocyte to astrocyte interaction. The 

chapter explored the interactions and communication exchange between astrocytes as a 

network which included identifying the ratio of astrocytes to neurons in biology and 

replicating this in hardware. This is a high-level global communication exchange. The 

steps taken to implement an astrocyte router within an astrocyte network were outlined 

and the astrocyte router used a low-level communication protocol to average and 

distribute IP3 within a neuro-glia network using groups of up to eight astrocytes. This work 

provided a scalable solution to the vast interconnect and communication paradigm.  

Results demonstrated that the astrocyte router provided a good trade-off between low 

area and power to overhead with a relatively low communication speed. 
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As the astrocyte network was developed in hardware, it required a low overhead scalable 

interconnect with a balance between speed and accuracy. Astrocytes are computationally 

expensive and therefore, demand a lot of resources on an FPGA platform. The use of a 

ring topology and the low overhead router in the NoC provided a reduced area/wire 

overhead and as astrocytes communicate at slow speeds in biological terms, the 

interconnect provided a slow communication speed which was biologically appropriate. 

This novel NoC interconnect, provided communication protocols which allows a 

significant number of astrocytes to exchange data with other astrocytes. Each astrocyte 

is interfaced with 10 neurons and each astrocyte tile router accommodates 8 astrocytes 

which allows 80 neurons per astrocyte tile facility. Moreover, the NoC interconnect 

provided a hardware building block for developing neuro-glia interconnect for self-repair 

strategies, aiming to provide a distributed and fine-grained self-repair using astrocytes in 

hardware. 

 

Chapter 7 validated the local ring topology hardware using self-repair implemented for 

use with a mobile robot. The chapter reviewed the mobile robot and the SANN designed 

and developed with self-repair in mind. The ring topology from Chapter 5 was applied into 

the existing framework and this provided an e-SP interconnect to provide the neural 

network with self-repair. This is a real-world application of a SNN with self-repair. Results 

showed that if the synapses within the neural network are faulty, this SANN has the ability 

to repair, even with a potentially catastrophic rate of faults, that is, 80% of faulty synapses 

within the network. 

 

 8.2 Thesis Contributions 

This thesis covered a substantial body of research into biological self-repair and realizing 

a computational model using NoC technology. Self-repair is a characteristic of the human 

brain and is provided by astrocyte cells. This thesis covered the communication protocols 

within an existing SNN framework, and combined the features of astrocytes with neural 

networks, more specifically SNNs and H-NoC. The resulting contributions are the first 

steps into realising large scale neuro-glia networks. 
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The contributions presented within this thesis are: 

 A novel NoC interconnect for local communication in a neuro-glia network between 

neurons and astrocytes (Chapter 5). 

 Detailed analysis of area footprint and scalability, in regard to keeping low 

overheads in hardware (Chapter 5). 

 Applying this interconnect for local communication exchanges within an existing 

framework (H-NoC) (Chapter 5). 

 A novel NoC router for global communication in a neuro-glia network between 

astrocytes (Chapter 6). 

 Detailed analysis of area and power footprints and scalability, in regard to keeping 

low overheads in hardware (Chapter 6). 

 Validating the NoC interconnect in hardware using an existing mobile robotic car 

(Chapter 7). 

 

 8.3 Future Work 

This entire body of work has focused on providing a scalable interconnect for large scale 

neuro-glia networks. That is, providing a hardware interconnect to support hardware 

models of the astrocyte. Astrocyte networks consist of local and global communication 

signals which are essential for self-repair. However, it is still within the embryonic stages 

of development in hardware. Using NoC techniques and engineering, this thesis provides 

scalable solutions with low area and power overheads to help realize large scale 

networks. 

 

This thesis has explored the astrocyte process, it has explored SNNs, mainly H-NoC, and 

how astrocytes may be applied into current SNN paradigms. The benefits of using NoCs 

has opened up the possibility of scalable communication protocols between astrocytes 

and neurons (inter-neuron) and astrocytes (inter-astrocyte) within a neuro-glia network. 

Extracting the most important signals and realizing the required protocols in hardware to 

exploit the slow innate astrocyte process, coupled with the faster SNN protocols, thereby 
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allows large scale neuro-glia networks to be explored further in the future. However, there 

is scope for future work within this body of work. 

 

Understanding astrocytes: Within the fields of neurobiology, computational 

neuroscience and computational modelling, astrocytes are still within their embryonic 

stage of development, especially, in regard to biophysical models of astrocytes. Within 

neural networks, astrocytes open up the possibility of self-repair and more complex 

models of the brain, yet we still don’t fully understand the relationships between neurons 

and astrocytes as the biological exploration of neural-glial interactions is still at a very 

early stage. However, each small progression in this understanding is another step in the 

right direction.  

 

As our understanding of glial cells and astrocytes progresses, interconnecting astrocytes 

and neurons within hugely dense parallel networks reinforces the necessity for scalable 

hardware capable of supporting hugely complex systems. The astrocyte models 

produced will lead to more complex and simplistic models, however, unlike neurons 

where there have been accurate models from the 50’s such as the Hodgkin and Huxley 

model [31], astrocyte models are still lacking and will need time to catch up. Eventually 

these new models will lead to a leap in computational models of repair. 

 

Global astrocyte models need to be developed further. The interaction between 

astrocytes and neurons provides repair, however, global self-repair is less understood. 

These networks of astrocytes have complex properties and until these are completely 

understood, the models will be limited. The role of IP3 and Ca2+ has been investigated on 

a small scale but realising this network in full is a challenge.  

 

Applying self-repair within a working SNN: Chapter 5 uses aspects of H-NoC, using 

the Tile Facility, Node Facility and neurons to communicate typical SNN data whilst 

cloning the packets and using this as a stimulus for the astrocyte process. The biggest 

constraint was the absence of dynamic synapses, this is both excitatory and inhibitory 

and works independently, as the PR on the synapses was hard coded. This was based 
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on the original H-NoC architecture. The PR values and weights had been based on the 

values used in computational models. The synapse PR could be increased but would 

have no effect on the firing frequency of the neurons within H-NoC. This model of the 

synapses could not be changed and therefore, the PR could not be increased. Therefore, 

in order to change H-NoC, it would need a newer model. A SNN with variable synapses 

would need to be integrated with an astrocyte in order to facilitate self-repair.  

 

Developing H-NoC with physical synapses and testing the ability of self-repair, is a long 

way off. The first step is to reduce the astrocyte and observe the role of interaction 

between H-NoCs neurons and the astrocyte. Progress has been shown in Chapter 5, 

however, this work requires implementing the ring topology and applying the mediation 

of PR in dynamic synapses, this would enable a neuro-glia network to adapt and repair 

to faults as this process occurs in the synapses. 

 

Back off algorithm to balance traffic and throughput: The exponential back off 

algorithm is a networking paradigm and an IEEE 802.11 standard based on ethernet 

protocols [134]. This algorithm uses feedback to overload a system with data and then 

decrease the rate of this process, in order to find an acceptable rate. This approach 

generally finds the cross over point between throughput and latency. Chapter 6 describes 

an astrocyte router which router waits for tokens to begin the IP3 averaging process. An 

ideal scenario is to use a full-scale model of astrocytes and begin overloading the 

astrocyte router with as much data as possible. The rate is then reduced, and the rate of 

which it operates with maximal throughput and minimal latency would be the ideal number 

of tokens, the system can handle. This work would require a lot more hardware to 

complete, and in the future, either increasing the hardware or reducing the astrocyte 

process can make this a viable stress testing method. 

 

Realizing a large-scale neuro-glia network in hardware: Using NoC interconnects has 

provided a scalable and efficient solution to realizing neuro-glia networks in hardware. A 

neuro-glia network consists of two layers, an astrocyte network and a neural network. 

NoC interconnects can provide hardware to bring together the self-repair and SNN 
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paradigms of the respective networks in hardware, yet this is still a long way off. A large 

scale neural network is still the main focus of researchers developing computational 

models such as the Blue Brain Project [26]. There has been research within IBM which is 

“the culmination of almost a decade of research and development”. From 2011 there has 

been an increase in programmable neurons (up to1 million) and programmable synapses 

(256 million). The ultimate goal, according to IBM, is to build a system with ten billion 

neurons and one hundred trillion synapses, all while consuming only one kilowatt of power 

[72]. A large scale neuro-glia network is limited by the scalability of the astrocyte. The 

astrocyte is a complex process that demands a large device utilisation, and this makes it 

difficult to simulate or realize multiple astrocytes on hardware. The number of astrocytes 

in a small neuro-glia network would be around eight, this would require 4-8 FPGA boards, 

and this means that the boards would also have to use physical wired connections to 

communicate. For instance, using one FPGA for two astrocytes, and thus, four FPGAs to 

realise eight astrocytes, this requires additional hardware as the astrocytes and their 

respective neural networks and digital interconnects would be spread amongst a number 

of boards which communicate using standardized on board communications to 

communicate between boards, reducing the analysis of the digital NoC interconnect. 

 

Addressing drift: Drift is typical in neural networks where the training has been offline. 

Offline training is typically preferred as online training is computationally intensive and 

takes times, the network can be trained offline using powerful software/hardware and the 

network can be applied to hardware and it can classify in real time. This has problems as 

the training of the network can have a bias, that is, it has no further learning enabled and 

so, even though something might slightly change with the application, the network has 

been trained based on input and output relationships, and may classify incorrectly [135]. 

There is scope within a neuroglia network to address drift. Astrocytes are capable of 

adjusting the PR of a synapse, although this body of work focuses on repair, it could be 

possible to employ a method of online training, if the output of the classifier is incorrectly 

classified, the network may be able to affect the PR of synapses and adjust the output. 
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These neural network models are focused on building large scale neural networks, which 

focus on using neurons and harnessing the processing power of neurons by mimicking 

the parallel nature of neurons, yet these neural models ignore the majority of signalling 

processes within the brain. As the astrocyte has emerged, the complexity of neuro-glia 

networks has exponentially increased, in order to fully understand how the brain 

processes information and facilitates repair, neural models should focus on producing a 

large-scale neuro-glia network with both astrocyte and neuron cells, each network with 

its own individual complexity. Combining these networks is at the time of writing, 

seemingly impossible. This work would require millions of astrocytes, billions of neurons 

and trillions of synapses. In order to realize these networks, it would require considerable 

work on exploring the role of astrocytes in biology and reducing the astrocyte in hardware 

whilst maintaining precision. From there creating a small astrocyte network and 

implementing this within a small scale fully functioning neural network, which would 

identify how these networks interact in hardware and how these processes may be 

optimised. This would allow a small-scale neuro-glia network with both the capabilities of 

complex information processing from the neurons and the self-repair capabilities of the 

astrocyte network with all the interactions between. It would then be paramount to scale 

this network combining clusters of astrocytes and using more than one small scale neural 

network. This work would lead to realizing large scale neuro-glia networks and thus, 

having a more complete understanding of how the brain works, repairs, combines 

networks in a scalable and efficient manner and not solely focus on the abstraction of 

how the brain processes information, as this completely ignores the complexity of 

astrocytes and their role within the brain. 
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