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Summary 

The detection and quantification of biologically important blood analytes plays a 

crucial role in the screening, diagnosis and management of disease. However the 

extraction of blood using hypodermic needles brings with it a plethora of issues. Two 

million cases of needle stick injuries in healthcare staff occur annually and 

approximately 10% of adults have needle phobia. Microneedles (MNs) have 

demonstrated potential in the extraction of interstitial fluid (ISF) in a minimally 

invasive manner due to their short length, thus avoiding stimulating pain receptors 

in the skin. ISF contains many of the same analytes that are found in the blood 

including glucose, which is critical in the management of diabetes. However, a large 

proportion of diabetics do not measure their blood glucose levels as often as 

recommended due to the pain and inconvenience of conventional methods. 

Therefore, there is great potential for a minimally invasive MN based approach in the 

extraction and determination of the concentration of glucose within the ISF to 

increase patient compliance and mitigate the negative effects of chronic 

hyperglycaemia.  

Chapter 1 discusses the history of blood diagnostics with a focus on the detection of 

hyperglycaemia in diabetes. The negative consequences of chronic hyperglycaemia 

and the issues with conventional blood glucose determination are discussed. The 

potential of MNs to overcome these issues through indirect measurement of blood 

analytes by sampling ISF is introduced. Chapter 2 details the materials and methods 

used in the experimental chapters.  

Hydrogel forming MNs made from crosslinked polymers have previously 

demonstrated their ability to withdraw ISF containing glucose in human studies. 

Chapter 3 investigates improving the swelling capability of these hydrogel MNs by 

including sodium carbonate in the formulation. A colorimetric glucose sensor is 

developed based on glucose oxidase, horseradish peroxidase and a colour forming 

dye. This sensor is then interfaced with the hydrogel MNs, initially in a hydrogel 

backplate and successfully demonstrates a visually apparent colour change in 

response to the extraction of glucose in simulated ISF in vitro. The time taken for the 
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colour change to occur is substantially decreased by embedding the sensor in a paper 

based backplate and increasing the length of the MN projections. 

Chapter 4 involves the fabrication of a single hollow MN device that can successfully 

withdraw simulated ISF extremely rapidly through capillary action. This device was 

then coupled to the paper based glucose sensor used in Chapter 3. A method to 

quantify the intensity of the colour change on the sensor backplate is developed and 

optimisation of the sensor to produce a linear colour change in response to glucose 

concentration is successfully carried out, thus increasing its potential as diagnostic 

point of care (POC) tool.  

Chapter 5 addresses some of the limitations of the device in Chapter 4 through the 

production of a single metal hollow MN device with a silicone housing that aids the 

flow of fluid from the MN tip and into the paper based sensor backplate through 

suction. The sensor backplate is also modified with an antioxidant to produce an 

“OFF-ON” signal response for the detection of hyperglycaemia within the simulated 

ISF. 

Finally, Chapter 6 contains the conclusions of the results chapters and discusses 

opportunities for further work. 
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Chapter 1 

1.0 Introduction 

1.1 Prologue  

Diagnosis and monitoring of disease through blood analysis is ubiquitous in modern 

healthcare, with the market value for global blood testing in 2015 being $51.5 

billion2. Diabetes is an example of one disease in which frequent blood monitoring is 

essential for decreasing the long term negative effects such as cardiovascular disease 

and stroke as well as avoiding hypoglycaemia which can lead to coma and death. In 

2013, self-monitoring of blood glucose (SMBG) using electronic personal glucometers 

was valued at $3.99 million3.  

Healthcare guidelines recommend SMBG four times daily in Type 1 diabetes and 

insulin dependent Type 2 diabetes, which can be increased up to ten times daily in 

periods of illness or poor control4. However, patient compliance is an issue with 40% 

of Type 1 diabetes performing less SMBG than recommended. This is partially due to 

the pain and inconvenience of blood sampling multiple times daily through the 

conventional method of using a lancet needle to obtain capillary blood on the 

fingertip.  

Microneedles (MNs) are a minimally invasive alternative to conventional needles for 

sampling interstitial fluid (ISF), which has been shown to contain analyte 

concentrations that correlate well to plasma concentrations5,6. Therefore, MNs may 

provide a painless and blood-free method of measuring plasma glucose indirectly and 

replace capillary blood sampling in SMBG, thus increasing patient compliance while 

decreasing the healthcare burden resulting from the long term complications of 

hyperglycaemia. 

Current advancements using MNs for sampling ISF has successfully demonstrated 

glucose responsive insulin delivery7,8, as well as single readings of ISF glucose in 

animals9 and humans10. However, these methods are currently restricted by long 

application times and the requirement of several processing steps post application 

to remove the ISF from the MNs and subsequent determination of the concentration 
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of glucose contained therein. This is time consuming, requires training and is 

therefore unsuitable for a patient Point-of-care (POC) device.  

The work undertaken in this thesis focussed on the development of a MN based 

device designed to rapidly withdraw ISF and determine the concentration of glucose 

via an integrated colorimetric system. Such an approach would enable the potential 

development of a POC device that enables the user to obtain glucose levels within 

the ISF rapidly and without the need for external processing, with the primary goal 

of reducing the incidence of hyperglycaemia in diabetes.  

 

1.2 Blood Diagnostics 

The invention of the compound microscope enabled some of the first scientific 

investigations of blood components. The Dutch microscopist Jan Swammerdan 

described the presence of “red corpuscles” in 1658 (Figure 1.1) which are now 

understood to be erythrocytes or red blood cells11. It was not until over 150 years 

later in 1843 that leukocytes or white blood cells were first reported by Gabriel 

Andral, a French Professor of Medicine, who linked abnormalities in the quantity and 

morphology of the cells to disease12. By the 1880s, microbiologists had isolated 

bacteria from the blood of patients suffering from tuberculosis, cholera, typhoid and 

diphtheria, isolating the organisms responsible for causing disease with the highest 

global mortality rates at that time. However, the antibiotic agents necessary to treat 

these bacterial infections would not be discovered for another 40 years.    

 

Figure 1.1: Illustration of “red corpuscles” of blood by van Leeuwenhoek in 1695, acquaintance of 
Swammerdan. Reproduced from Haju et al.13 
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During the early 20th Century, analytical techniques to identify and quantify chemical 

entities within the urine and blood were developed by clinical chemists. Major strides 

made by Otto Folin between 1904 and 1922 allowed the quantification of urea, 

creatinine, phosphorous and chloride amongst others from the urine alongside 

methods to quantify ammonia and creatinine concentrations in the blood. By 1920, 

venepuncture was in widespread use throughout the world of medicine and clinical 

chemistry in order to obtain blood from patients for analysis. In 1930, Kay reported 

the first clinical laboratory method for the determination of the enzyme alkaline 

phosphatase14 and linked its elevated presence in the blood to Osteitis deformans, 

known as Paget disease in modern medicine, which is characterised by abnormal 

bone growth due to excessive breakdown and formation of bone tissue. This spurred 

investigations into enzymology in clinical laboratories and soon after Cherry and 

Crandall had developed a method to quantify lipase activity in blood serum15. 

Measurement of the common metal cations such as sodium, potassium, calcium and 

magnesium within biological fluids was aided by the introduction of the flame 

photometer in the 1940s16.  Relying on the relatively low excitation energies of the 

Group I and II alkali and alkali earth metals, a flame was used to provide sufficient 

thermal energy to an atomised sample of metal ions in order to raise an electron 

from a lower energy state to a raised excited state17. Electrons in the excited state 

are unstable over time therefore they will return to a lower energy state and the 

subsequent energy released is emitted as visible radiation that can be measured and 

the concentration of the metal cations within the sample can be quantified. 
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Figure 1.2: Results report of Technicon SMA-12 AutoAnalyzer available in 1966 showing multiple 
analyte measurements and reference values simultaneously. Reproduced from Peitzman et al.16 

 

While the flame photometer provided a more convenient and less costly alternative 

to quantify the electrolytes in the serum and urine than the previous methods 

available, which could take between 24 - 48 hours for a single measurement of 

sodium concentration in serum18, integration of flame photometers to automated 

systems provided a revolution in biological electrolyte measurements in the form of 

the AutoAnalyzer manufactured by Technicon during the 1960s. The AutoAnalyzer 

allowed higher throughput of samples and provided a means of measuring multiple 

blood analytes simultaneously (Figure 1.2). 

Modern clinical laboratories in hospitals are able to perform a plethora of blood tests 

in extremely high numbers due to advances in automated systems. Routine blood 

tests include the Basic Metabolic Panel (BMP) also known and Urea and Electrolytes 

and the Comprehensive Metabolic Panel (CMP).  



25 
 

The CMP has a total of fourteen analytes and provides information on blood sugar, 

blood proteins, kidney function, liver function, acid/base balance and electrolytes. 

Table 1.1a and 1.1b shows the range of analytes included in the CMP. In 2014, 230 

million biochemistry and 47 million haematology laboratories tests were carried out 

by the NHS in the UK, incurring a cost of £415 million.19   

Table 1.1a Analytes included in CMP and possible indications causing measurements outside of 
reference ranges.20  

Analyte Elevated Levels Indicate Decreased Levels Indicate 

 

Glucose 

Diabetes mellitus, adrenal 

hyperfunction 

 

Excess insulin, hepatic failure, 

starvation, adrenal 

hypofunction 

 

Calcium 

Thyroid and parathyroid 

hyperfunction, bone 

disorders, elevated vitamin 

D, cancers. 

Renal failure, parathyroid 

hypofunction, vitamin D 

deficiency 

 

Sodium 

Dehydration, adrenal 

hyperfunction, renal 

dysfunction, diabetes 

insipidus. 

Renal failure, diuretics, 

overhydration, renal, hepatic 

and heart failure. 

 

Potassium 

Renal failure, adrenal 

hypofunction, acid-base 

imbalance 

Diuretics, diarrhoea, 

vomiting, adrenal 

hypofunction, acid-base 

imbalance 

 

Chloride 

Acid-base imbalance from 

GI, adrenal and renal disease 

Renal disease, adrenal 

hyperfunction, acid-base 

imbalance 

 

Albumin 

n/a Hepatic failure, renal failure, 

malnutrition 
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Table 1.1b Analytes included in CMP and possible indications causing measurements outside of 
reference ranges.20  

Analyte Elevated Levels Indicate Decreased Levels 
Indicate 

Total Protein Chronic infection, 

inflammation, multiple 

myeloma 

 

Malnutrition, hepatic or 
renal failure. 

Blood Urea Nitrogen 
(BUN) 

Renal failure, 
dehydration, GI 
haemorrhage. 

Hepatic failure 

Creatinine Renal failure, 
dehydration 

n/a 

Alkaline Phosphatase Hepatic disease, heart 
failure, parathyroid 

hyperfunction 

n/a 

Alanine Amino 
Transferase 

Hepatic disease n/a 

Aspartate Amino 
Transferase 

Hepatic disease, heart 
injury, muscle injury 

n/a 

 

Total Bilirubin 

Hepatic disease, 

haemolytic anaemia 

 

n/a 

Total CO2 Acid-base imbalance Acid-base imbalance 
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1.3 Diabetes 

Diabetes mellitus is a chronic condition that involves the dysfunctional regulation of 

glucose in the bloodstream. The prevalence of diabetes in adults has increased 

globally since 1980, when 4.7% of the population were diagnosed, to 8.5% of the 

population being diagnosed in 201421. Across the UK, the average prevalence of 

diabetes in adults was 6.0% in 2013. (Table 1.2). 

Table 1.2: Prevalence of diabetes in UK in 2013 broken down by country.22 

Country Prevalence Diabetic Population 

England 6.0% 2,703,044 

Northern Ireland 5.3% 79,072 

Scotland 5.2% 252,599 

Wales 6.7% 173,299 

 

Diabetes can be categorised into several different types according to its aetiology. 

Type 1 diabetes, previously known as insulin dependent or childhood onset diabetes, 

is characterised by a significantly decreased or a total lack of insulin production by 

the pancreas. This is caused by a T cell dependent autoimmune response by the body 

that leads to infiltration of the pancreas by CD4+, CD8 and CD11c+ T cells23 and 

subsequent destruction of islet β cells that are responsible for endogenous insulin 

production24. If left untreated, Type 1 diabetics exhibit symptoms such as excessive 

thirst and urination, constant hunger, weight loss, and vision changes which are all 

due to chronic hyperglycaemia and ketoacidosis25. Without endogenous insulin 

production, Type 1 diabetics require exogenous insulin replacement therapy to 

survive as chronic hyperglycaemia will lead to organ failure, coma and death26.  

The exact cause of Type 1 diabetes is not fully understood27, although it has been 

linked to inherited genetic factors. However, studies of identical twins with Type 1 

diabetes has provided evidence that susceptibility to the disease is not wholly genetic 

indicating that environmental factors also play a role in the pathogenesis of the 

disease28. Among the environmental factors influencing the onset of Type 1 diabetes 

are modulation of the intestinal microbiota in birth by caesarean section, antibiotic 
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use in early stage life29, viral infection with enterovirus30, higher birth weight and 

increased weight gain between the ages of 12 – 18 months31. 

Accounting for approximately 90% of global cases, Type 2 diabetes is the most 

prevalent form of the disease32. Unlike Type 1 disease, the pancreatic islet cells 

remain functional but they fail to compensate for the insulin resistance of the body 

that is caused by increased body mass and adipose tissue33 as well as the 

inflammatory response to hyperglycaemia34. This failure to produce enough 

endogenous insulin, coupled with decreased insulin sensitivity, leads to chronic 

hyperglycaemia that can remain undetected for years until the complications of Type 

2 diabetes manifest themselves.  

Intermediate conditions such as impaired glucose tolerance and impaired fasting 

glycaemia are diagnosed according to the degree of hyperglycaemia found in the 

bloodstream and while they are reversible, patients can progress into the overt 

chronic hyperglycaemia of diabetes, especially Type 2.  

Gestational diabetes occurs in pregnant women who have not previously had 

diabetes but are found to have hyperglycaemia after routine screening, normally at 

28 weeks into the pregnancy35. While it can be a temporary condition that lasts 

throughout the pregnancy, it does increase the long term risk of Type 2 diabetes. A 

meta-analysis of 20 studies carried out on a total of 675,000 pregnant women found 

that women with gestational diagnosed diabetes had a 7.43 fold increased risk (CI 

4.79-11.51) of a subsequent diagnosis of Type 2 diabetes at a later point in life 

compared to women without gestational diabetes36.   

1.4 Hyperglycaemia 

Chronic hyperglycaemia causes damage to the vasculature tissue. It has been 

suggested that the mechanism of this damage is caused by the overproduction of 

reactive oxygen species (ROS) and superoxides by the mitochondria in response to 

hyperglycaemia37 that influences five major metabolic pathways. These are an 

increased flux of glucose and other sugars through the polyol pathway, increased 

intracellular formation of advanced glycation end-products (AGEs), increased 

expression of the receptor for AGEs and its activating ligands, activation of protein 
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kinase C isoforms and over activity of the hexosamine pathway38. Through these 

mechanisms, the action of intracellular ROS is increased, which can cause defective 

angiogenesis in response to ischemia and activate pro-inflammatory pathways, 

leading long term vascular damage39.   

The deleterious effect of hyperglycaemia are commonly separated into 

microvascular and macrovascular complications. Microvascular complications 

include diabetic retinopathy, nephropathy and neuropathy. Macrovascular damage 

leads to coronary artery disease, peripheral artery disease and stroke.  

1.4.1 Microvascular Complications 

1.4.1.1 Diabetic Retinopathy 

Almost all Type 1 diabetics and 58% of Type 2 diabetics develop retinopathy within 

twenty years of diagnosis40. The extent of the retinopathy is correlated to the severity 

of hyperglycaemia and the presence of hypertension41. Early stage background 

retinopathy is indicated by the presence of microaneurysms and small haemorrhages 

of the blood vessels in the middle layers of the retina42. More severe proliferative 

retinopathy involves pathological angiogenesis on the surface of the retina and can 

lead to vitreous haemorrhage and retinal detachment. Vision loss occurs in 25 – 35% 

of high risk cases of proliferative retinopathy43.  

1.4.1.2 Diabetic Nephropathy 

Through a combination of hyperglycaemia and hypertension, progressive loss of 

renal function is observed in 30 – 40% of the diabetic population 25 years after 

diagnosis44. Atrophy of the renal vasculature caused by thickening of the basement 

membrane, interstitial fibrosis and arteriosclerosis leads to microalbuminuria which 

is the presence of elevated levels of albumin in the urine, indicating early stage renal 

damage. Approximately 20% of patients progress to more serious proteinuric 

nephropathy which has a poor prognosis that leads to end stage renal failure and 

cardiac disease45.  

1.4.1.3 Diabetic Neuropathy 

Peripheral nerve dysfunction affects approximately 50% of the diabetic population. 

In distal sensory neuropathy, the most common form that accounts for 80% of 
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diabetic neuropathy cases, typical symptoms experienced include tingling, burning, 

“electric” pain and numbness46. This loss of the protective sensation through 

numbness can increase the risk of peripheral limb injury and infection and can lead 

to diabetic foot ulceration47.  

Diabetic foot ulcers are caused by a combination of neuropathy, peripheral vascular 

disease and minor trauma48 and are the cause of 85% of lower extremity amputations 

in non-traumatic cases49.  

1.4.2 Macrovascular Complications 

While there is strong evidence to suggest that intensive blood glucose control 

decreases the risk of microvascular complications, the evidence that macrovascular 

complications such as stroke and cardiovascular disease are decreased through strict 

glucose control is still debated50. However, the 10 year follow up on the initial UKPDS 

trial in which Type 2 diabetics received intensive glucose lowering therapy compared 

to conventional therapy51 has shown that better glucose control can decrease the 

risk of myocardial infarction by 15% (p = 0.01) and all-cause mortality by 13% (p = 

0.007).  

The underlying cause of the macrovascular complications involves the increased risk 

of atherosclerosis, which is the build-up of a plaque consisting of lipids and fibrous 

elements in the arteries52. This plaque is a result of chronic inflammation of the 

epithelial cells of the vasculature causing an immune response involving monocytes, 

T-lymphocytes, macrophages and mast cells53 and ultimately leads to the narrowing 

of the blood vessels and the propensity for thrombotic formation54. Additionally, 

evidence suggests that there is increased platelet adhesion and increased 

coagulability in Type 2 diabetics55. This further exacerbates the risk of thrombosis 

formation, cardiovascular events and stroke.  In fact, a study on a Finnish diabetic 

population concluded that the risk of myocardial infarction amongst the diabetic 

population was on par with those who had previously experienced myocardial 

infarction56.  
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1.5 Glycaemic Monitoring Requirements 

Single measurements and measurements of long term blood glucose levels are 

routinely monitored in medical settings by healthcare professionals and at home by 

diabetics. In the clinic, the levels of glycated haemoglobin is measured to give an 

indication of the glucose control over a prolonged time period. The measurement of 

glycated haemoglobin is used to determine the average levels of glucose in the blood 

over the previous two to three months57 and is less prone to be affected by short 

term postprandial fluctuations. A component of the haemoglobin (Hb A1c) present 

in erythrocytes, reacts with glucose in the plasma wherein the aldehyde group on 

glucose covalently bonds to the free amine groups present on the peptide chain of 

the Hb A1c forming a Schiff base58. Unlike other specific glycosylation reactions of 

peptides that serve to functionalise them for specific roles, this glycosylation is not 

catalysed enzymatically and, therefore, the rate of reaction is determined by the 

concentration of free glucose in the plasma over the entire course of an erythrocyte’s 

lifespan (approx. 120 days59). In this way, an indication of the average glucose 

concentration over the previous 3-4 months can be obtained. The National Institute 

of Clinical Excellence (NICE) currently recommends that HbA1c should be measured 

every three to six months in persons with Type 1 diabetes and every six months in 

persons with Type 2 diabetes4. The target concentration is 48mmol/mol in most 

diabetics, however, it can vary depending on the treatment regime60. In general, a 

concentration of >75mmol/mol is a sign of hyperglycaemia over a prolonged period 

and would result in a patient being recommended to carry out SMBG up to ten times 

per day to achieve control4.  

The current guidelines by NICE recommend people living with Type 1 diabetes to 

routinely undertake SMBG four times per day, however, it is recommended to check 

as often as ten times per day in periods of poor glucose control, exercise or illness.61 

In Type 2 diabetes, glucose monitoring is a requirement if the person is taking 

hypoglycaemic agents such as sulphonylureas or insulin. Such pharmacological 

agents are given as second or third line interventions when adequate glucose control 

cannot be achieved through lifestyle changes or the use of a first line agent such as 

Metformin. 
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SMBG by people living with diabetes is commonly performed using an electronic 

glucose meter to obtain a reading of the concentration of glucose within the blood 

at that single point in time. There are many different types of glucose monitors 

available to the public, however, most systems are comprised of a handheld device 

with a display screen. Propriety test strips are inserted into the device and a sample 

of blood is applied to the test strip.  The plasma component of the blood then diffuses 

through an enzyme and electroactive chemical reagent layer that coats an electrode. 

The glucose present in the blood is oxidised by the reagents to produce an electrical 

current which is used to calculate the concentration of glucose via amperometric 

means. Although the exact mechanisms vary between proprietary devices, in most 

cases an electrical current is produced proportional to the amount of glucose present 

in the sample via the reduction of an electroactive chemical such as ferricyanide62. 

When glucose is oxidised by enzymes such as glucose oxidase63, glucose 

dehydrogenase or hexokinase64,65, the ferricyanide present in the strip is reduced to 

ferricyanide and the resulting change in electric potential is measured by the 

electrode. This change is used to calculate the concentration of glucose and is 

displayed to the user.   

The most common method to obtain this blood sample is through the use of a lancet 

needle that can be up to 6 mm long. The needle is inserted into the fingertip via the 

spring-loaded mechanism and a small volume of capillary blood is presented to the 

sample inlet on each test strip. This method has been reported to be inconvenient 

and painful66-68 and leads to compliance issues in the diabetic population. 40% of 

Type 1 diabetics do not undertake SMBG as often as recommended69 and this can 

have negative consequences due to the complications of hyperglycaemia described 

in Section 1.4. Minimally invasive methods to determine the concentration of 

glucose within the plasma through the measurement of ISF have been proposed as 

alternatives70,71 which seek to increase the convenience and decrease the pain 

associated with SMBG, leading to better compliance and long term outcomes for 

people living with diabetes. 
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1.6 Microneedles 

Microneedles (MNs) are an intradermal technology first proposed in in 197672 for the 

purpose of enhancing drug delivery through the skin. The US patent granted to  

Gerstel and Place states that through the aid of a plurality of puncturing projections 

a drug could be percutaneously delivered from a reservoir through the stratum 

corneum and into the epidermis (Figure 1.3).  

 

 

Figure 1.3: Original diagram from Gerstel and Place 1976 patent suggesting use of MN as a drug 
delivery device, showing penetration through the stratum corneum. 

 

However, the technology required to produce the first proof-of-concept device that 

was capable of drug delivery only became widely available in the late 1990’s with the 

rise of microelectronics industry. In 1998, the first publication using MNs to deliver a 

model hydrophilic compound, calcein, through human skin was published by Henry 

et. al73.  
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There have been many subsequent iterations of MNs following this initial application 

by Henry et al., however, MNs can broadly be described as consisting of one or more 

needle-like structures projecting from a supporting baseplate. The needles are 

generally between the length of 25 µm and 2000 µm74 and can be produced in a 

range of 3D geometries including conical, cylindrical, pyramidal and various 2D planar 

designs. Additionally, MNs can be fabricated with a central hollow channel through 

which fluid can pass, similar to a hypodermic needle.  

 
One of the major benefits of MNs are their minimally invasive nature due to their 

small dimensions. The application of MNs is commonly reported to cause little or no 

pain compared to conventional hypodermic needles due to their short length and 

narrow profile, thus avoiding the stimulation of dermal nociceptors75. This will be 

discussed further in Section 1.9. 

 

1.7 Classification of MNs 

Depending on the shape and design, MNs can be classified into a number of different 

categories: solid MNs, coated MNs, dissolving MNs, hollow MNs, and hydrogel 

forming MNs, each of which will be discussed below. 

 

1.7.1 Solid MNs 

Solid MNs can be used as a “pre-treatment” method for skin in order to create pores 

through which a target compound can passively diffuse into the epidermis for local 

action or systemic absorption76. 

Henry et al. produced the first solid MN array from silicon in order to enhance the 

skin permeability of a model fluorescent compound calcein as previously mentioned. 

By mounting human epidermis skin on Franz diffusion cells the transport of the 

fluorescent dye from the donor compartment to the receiver compartment after one 

hour was measured by fluorescent spectroscopy. The ability of the MNs to enhance 

the permeability of the epidermis was then shown by the application of a solid silicon 

20 x 20 MN array with conical MNs approximately 150 µm in length (Figure 1.4) for 

various lengths of time.  



35 
 

 

Figure 1.4: Scanning electron microscope (SEM) images of 20 x 20 solid silicon MN array fabricated by 
Henry et al. 

 

It was found that leaving the MN array in place on the epidermis, the rate of transport 

of the calcein was approximately three orders of magnitude greater than the 

untreated epidermis. When the MN array was applied for ten seconds and then 

removed, the rate of transport was increased by four orders of magnitude and 

subsequently it was shown that by leaving the MN applied for one hour before 

removal, the transport was increased by a further order of magnitude. The suggested 

mechanism of this increase in permeability was due to micropores formed in the 

epidermis by the MN arrays, which was evidenced by examination of the skin sample 

by light microscopy after MN application. Micropores approximately 1 µm in 

diameter were found penetrating the epidermis, thus bypassing the main barrier to 

drug diffusion - the stratum corneum.  

 

McAllister et al.77 have demonstrated fabrication techniques to produce solid MNs 

from a range of materials including silicon, metal, polymers and glass (Figure 1.5). 

Reactive ion etching of a silicon substrate was used to produce large arrays of MNs 
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150 µm in length, while metal arrays were fabricated via electroplating of Ni or NiFe 

on to silicon moulds to produce MNs 120 µm in height. Polyglycolic acid and 

polylactic acid MNs were fabricated using polydimethylsiloxane (PDMS) negative 

moulds and glass MNs were produced using conventional glass micropipette pulling 

apparatus. 

 

 

Figure 1.5:  SEM images of MNs of different morphologies fabricated from various materials - (A-B) 
Silicon (C) Metal (D-F) Polylactic and polyglycolic acid  

 

Oh et al.78 have investigated the use of solid MNs alongside the application of a drug 

loaded hydrogel patch in order to deliver calcein through excised rat skin utilising a 

similar in vitro Franz diffusion set up as Henry et al. MN arrays manufactured from 

polycarbonate were produced by first creating so called “in-plane” MNs which were 
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then grouped together to create 2D arrays of MNs, or “out-of-plane” MNs of various 

lengths and densities (Figure 1.6).  

 

 

Figure 1.6: Out-of-plane MN array (left) created from grouping several in-plane MNs fabricated from 
polycarbonate. Magnified image of single MN projection from array (right). 

 

The arrays comprised of 200 µm and 500 µm long projections with densities of 45, 

99 and 154 MNs/cm2. The hydrogel patch loaded with 1mM calcein was formulated 

from carbopol 940 and triethanolamine. The investigators determined that the 

delivery rate of the target compound was positively affected by increased MN length 

and density, with the greatest rate of diffusion observed with 500 µm MNs with a 

density of 154 MNs/cm2.  

 

This approach of pre-treating the skin with solid MNs and then placing a drug loaded 

patch over the area has been termed the “poke and patch” method and has been 

successfully demonstrated in human subjects to enhance transdermal delivery of 

hydrophilic drug molecules that would otherwise not permeate through the 

hydrophobic stratum corneum. Wermeling et al.79 carried out a small scale human 

trial (six treated and three control subjects) to demonstrate the delivery of 

Naltrexone, an opioid receptor antagonist for the treatment of opiate and alcohol 

dependence, using the poke and patch method.  
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Arrays consisting of 50 stainless steel MNs (Figure 1.7) were inserted into the skin of 

the subjects across four patch sites for a few seconds before removal. Subsequently, 

adhesive patches containing (% w/w) 16% Naltrexone HCl, sterile water for injection 

(20.25%), propylene glycol (60.75% USP), 2% hydroxyethyl cellulose and 1% benzyl 

alcohol were placed over the application sites for the study duration. Steady state 

plasma concentrations of Naltrexone were detected in the treatment groups after 2 

hours and this was maintained for at least 48 hours, whereas no detectable quantity 

of drug in the plasma was found in the control group that did not have skin pre-

treatment. 

 

Figure 1.7: (A) MN array of 50 stainless steel projections for pre-treatment of skin. (B) Resultant 
micropores created by application of MN array on human volunteers visualised with gentian violet (C) 
Adhesive drug loaded patch for subsequent application to pre-treated skin 

 

1.7.2 Coated MNs 

The poke and patch method of using solid MN arrays to create transient micropores 

in the skin followed by drug application has been shown as a feasible method to 

enhance the transdermal delivery of otherwise skin impermeable hydrophilic drugs. 

However, it is inherently inconvenient for the patient as it requires two distinct steps, 

which could negatively affect patient compliance and increase the risk of improper 

use.   
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Coating MNs with the target drug or material that is to be delivered circumvents the 

need for two steps, as the target compound is delivered to the skin during the MN 

application step. However, due to the small surface area of MN arrays the total 

amount of target compound that can be delivered is dependent on the array size. 

Therefore, the type of payload suitable for coated MN arrays is limited to extremely 

potent materials where the clinically effective dose is extremely low. Suitable 

payloads include vaccines80,81, steroids82, peptides83 and genetic material84,85. 

 

1.7.3 Dissolvable MNs 

MN arrays composed of water soluble polymers have been used as drug delivery 

vehicles via incorporation of the target compound into the polymeric matrix of the 

MN. When the MN is applied, the ISF in the epidermis dissolves the polymer and the 

target compound is released from the MN and into the skin. From there the target 

compound can exert its effect locally or can be absorbed into the blood stream for 

systemic effect. Some example materials include carboxymethylcellulose86,87, 

maltose88, chitosan89 and poly(vinyl alcohol) (PVA)90,91. 

As the objective of these devices is for the polymer matrix to dissolve in the skin, it is 

necessary for the polymer material to be biocompatible. Hyaluronic acid (HA) and 

poly(vinylpyrrolidone) (PVP) which are approved for use by the Food and Drug 

Administration have been used to fabricate dissolvable MNs containing gentamicin92, 

an aminoglycoside typically used to treat severe gram negative  infections93. The MNs 

consisted of a 19 x 19 arrays of needles, 500 µm in height (Figure 1.8) and exhibited 

complete dissolution 5 mins after insertion into neonatal porcine skin. In a murine 

animal model, successful delivery of gentamicin was observed with the maximum 

plasma levels achieved between one and six hours post application.  
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Figure 1.8: (Above) Photograph of dissolvable MN arrays containing gentamicin (Below) OCT images 
of insertion and subsequent dissolution of 19 x 19 MN array in neonatal porcine skin. Reproduced 
from González-Vázquez et al.91 

 

The delivery of insulin has also been investigated using dissolvable MNs94. A 

formulation composed of starch and gelatin was used to encapsulate insulin before 

formation into MN arrays that were robust enough to withstand penetration into 

porcine skin in vitro. The hypoglycaemic effect of the insulin delivered from the MNs 

was observed to be similar to a subcutaneous injection of the insulin in a rat animal 

model.  

 

1.7.4 Hydrogel forming MNs 

Swellable hydrogels can be prepared from polymers that are initially water soluble 

but when crosslinked become water insoluble. Rather than dissolving, the polymer 

will swell with fluid that is drawn into the structure by hydrophilic or ionised groups 

such as hydroxyl (−OH), carboxylic (−COOH), amine (-NH2) and amidic (−CONH-) 

residues present in the polymer chains95. Swellable hydrogels that are used in MN 

manufacture generally consist of a crosslinked polymer network that forms a 

mechanically robust structure when in the dry state (xerogel) which then rapidly 
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imbibes fluid and swells in volume when placed in contact with aqueous solutions. In 

this way, hydrogel MNs can be used to pierce through the outermost layers of the 

skin and swell with ISF. This provides a path for any drugs loaded within the MN to 

diffuse into the skin and exert their effect locally or be delivered systemically.  

For drug delivery purposes a number of different polymers have been used to create 

hydrogel MNs. Arrays consisting of PVA crosslinked by freeze thaw cycles96 has 

successfully demonstrated in vitro delivery of insulin in a Franz diffusion cell 

experiment with porcine skin. Approximately 50% of the insulin loaded into the MNs 

was released over 6 h. The swelling of the MN with ISF can be seen in Figure 1.9 

wherein blank crosslinked PVA hydrogel MNs were inserted into the arms of human 

volunteers for up to 3 hours.  

 

 

Figure 1.9: PVA MN arrays fabricated from crosslinked PVA swelling due to insertion into human skin 
(A) Before insertion (B) 1 h after insertion (C) 3 h after insertion  

 

1.8 Anatomy of the skin 

The skin can be stratified into two layers - the epidermis and the dermis, which are 

delineated by the epidermal-dermal junction. Below the dermis exists a layer of 

subcutaneous fatty tissue known as the panniculus adiposus which is separated from 

the deeper regions of the rest of the body by a layer of striated muscle known as the 

panniculus carnosus. The main anatomical features of the skin are conserved across 

the entire surface of the body however the glabrous skin present on the soles of the 

feet and the palms of the hands has a thicker epidermis, is devoid of hair follicles and 

sebaceous glands and has encapsulated sensory organs in the dermis97. The non-

glabrous skin, or hairy skin, that is present on the rest of the body, is marked by the 
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presence of hair follicles and sebaceous glands. Sweat glands are present on all skin 

surfaces at a density ranging between 100 - 400 glands / cm2.  

1.8.1 Epidermis 

The most superficial skin layer, the epidermis, consists almost entirely of 

keratinocytes which produce numerous fibrous proteins named keratins which add 

mechanical rigidity to the cells as well as long chain saccharides named 

glycosaminoglycans98. Keratinocytes form 95% of the cellular mass of the epidermis 

and originate from the basement membrane at the epidermal-dermal junction. 

Initially keratinocytes are formed attached to the basement membrane, however, as 

they mature they migrate progressively toward the surface of the skin and as such 

the epidermal keratinocytes are grouped into four distinct layers – the stratum 

basale, stratum spinosum, stratum granulosum, stratum lucidum and the stratum 

corneum (Figure 1.10). The layers are differentiated from each other by the 

morphology and function of the keratinocytes which are in different stages of 

maturity.  



43 
 

 

Figure 1.10: Human skin histological image showing layers of epidermis and dermis99 

 

The stratum basale is the deepest later of the epidermis and largely consists of a 

single layer of stem cell keratinocytes at the epidermal-dermal junction100, however, 

it may be two or three cells thick in glabrous or hyperproliferative skin97. Mitosis of 

the keratinocytes in this layer produces daughter cells, of which half migrate toward 

the skin surface and the other half remain at the basement membrane. As the 

keratinocytes move into the stratum spinosum they lose the ability to divide and 

begin to join together through intracellular bridges to form desmosomes that add 

strength and flexibility to the skin101. Cessation of metabolic activity and apoptosis of 

the keratinocytes is observed in the stratum granulosum leading to an almost 

complete keratinisation of the cells102. The stratum corneum is the outermost layer 

of the epidermis and is comprised of dead, flattened keratinocytes that are each 

attached to its neighbour forming a barrier against external stimuli such as chemicals, 



44 
 

heat and microorganisms. The entire process of the migration of the keratinocytes 

from the stratum basale to the stratum corneum takes approximately 28 days in a 

0.1 mm epidermis103. The remaining 5% of cells in the epidermis consist of 

melanocytes, Langerhans’ cells and Merkel cells. Melanocytes give the skin its 

pigmentation through the production of melanin. Langerhans’ cells are dendritic 

immune cells that present antigens to naïve T cells in the lymph nodes in order to 

trigger an immune response. They also play a role in hypersensitivity of the skin and 

chronic inflammatory conditions such as eczema and psoriasis104. The function of 

Merkel cells is not universally agreed upon105. Conventionally thought to play a role 

in mechanoreception, as they can be found associated with nerve terminals, more 

recent research has shown that not all Merkel cells are in contact with neurons and 

it has been suggested that they may serve as a diffuse endocrine system throughout 

the skin106.   

1.8.2 Dermis 

The dermis is situated below the epidermis and is mainly composed of 

polysaccharides and proteins. Fibroblasts, mast cells, histiocytes, monocytes and 

macrophages are all present in the dermis107. The proteins within the dermis are 

comprised mainly of collagen and elastin which are produced by the fibroblasts. In 

fact, 70% of the dry weight of dermis is comprised from collagen which increases the 

tensile strength of the skin. Elastin is much more flexible and aids the skin to return 

to its natural shape after stretching. The dermis is classified into two layers: the 

papillary and the reticular layer (Figure 1.11). 
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Figure 1.11: Vasculature organisation of the dermis. Subcutaneous vessels reach into the dermal layer 
to form the deep vascular plexus and superficial vascular plexus108  

 

The papillary layer is closest to the epidermal-dermal junction and contains less 

neurons and capillaries, while the reticular layer is deeper and contains more 

connective tissue and blood capillaries. Larger blood vessels in the subcutaneous fat 

layer below the dermis branch off into the reticular dermis and form a network of 

capillaries known as the deep vascular plexus109 which supplies hair follicles and 

glands. Vessels also connect this network to the superficial vascular plexus which is 

situated closer to the epidermal-dermal junction in the papillary layer.   

1.9 Pain associated with MNs 

One of the major advantages of MNs over conventional drug delivery and fluid 

withdrawal is the lack of pain associated with MN insertion into the skin. There have 

been a number of studies undertaken to investigate the difference in the perceived 
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pain of MNs compared to hypodermic needles when used in humans. These will now 

be discussed below.  

To compare the pain caused by different intradermal devices, the magnitude of the 

pain or discomfort upon application must be quantified. However, the inherent 

subjectivity of measuring pain levels in a given individual means this can prove 

difficult.  To facilitate this, investigators commonly ask the subjects to rate the 

severity of the pain on a Visual Analogue Scale (VAS) with each end of the scale 

marked with descriptors or a numerals (Figure 1.12). 

 

 

Figure 1.12: VAS scale for quantification of subjective pain experienced by human subjects. 
Reproduced from Melzack et al.110 

 

Originally used to rate a patient’s perceived wellbeing111 VAS has also been adapted 

to score other indications. The subject is usually asked to mark on the scale the 

intensity of the pain experienced and the distance along the scale is determined112 in 

order to provide a quantifiable measurement.  

Kaushik et al.113 conducted a small scale trial on 12 subjects in order to evaluate the 

pain caused by the application of a silicon MN array containing 400 needles that were 

150 µm in length. The needles had an approximately 80 µm wide base and tapered 

to a 1 µm wide tip. As a positive control, a 26 gauge hypodermic needle was inserted 

into the skin to a depth of 2 mm which was controlled via modification of the needle 

cover to expose only 2 mm of the needle. A negative control was also employed for 

comparison which consisted of a smooth silicon wafer with no MN projections.  

The subjects were blinded to the treatment devices and each subject was exposed to 

each treatment four times in a random order. The subjects were asked to rate the 

intensity of the pain on a 100 mm long VAS that included the terminal descriptors 

“No pain” (0) and “Worst Pain” (100). The mean pain score for the MN array was 
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extremely low (0.67) and was not found to be statistically different from the negative 

control (0.42) (p = 0.09), whereas the hypodermic needle was reported to cause the 

most pain (mean pain score = 23.9) which was statistically different to the mean pain 

score of the MN array (p < 0.001). These results demonstrated that this particular 

MN array was indistinguishable from the application of a blank silicon wafer and, 

therefore, could justifiably be described as painless. An important consideration is 

the 150 µm length of the MNs used in this study, which is relatively short in 

comparison to other MNs that have ranged up to 1400 µm in length114.  

The pain associated with MNs of greater length was investigated using a solid MN 

array and hollow MN array in 18 human subjects115 . The solid MNs were composed 

of stainless steel wire that had been cut in order to give it a bevelled edge (Figure 

1.13). 

 

Figure 1.13: (A) 4x4 MN array fabricated from solid stainless steel wires (B) individual MN from solid 
MN array (C) 4x4 MN array fabricated from hypodermic needles (D) individual MN from hollow MN 
array 
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The 4 x 4 arrays were made with MNs of either 200 µm, 300 µm or 400 µm in length 

(200S, 300S and 400S). The 4 x 4 hollow array was fabricated using stainless steel 

hypodermic needles and were either 300 µm or 550 µm in length (300A and 550A). 

The subjects were asked to rate the intensity of the pain immediately after 

application of each MN (Figure 1.14). Blank baseplates were used as negative 

controls.  

 

Figure 1.14: (a) Pain scores for solid MN arrays with increasing MN height (200µm – 400 µm) (b) Pain 
scores for solid MN 300 µm in height compared to hollow MN 300 µm and 550 µm in height. 

 

As Figure 1.14 shows, the average pain scores were quite low, with the median for 

all MNs rated as 1 out of 10 apart from the longest MN of 550 µm, which was 2. There 

was no significant difference found between the negative control compared to any 

other MN array irrespective of the length, diameter or whether it was comprised of 

solid or hollow MNs. This study demonstrated that MNs of a greater length than the 
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previous investigations by Kaushik et al.113 did not cause any significant pain 

compared to the control. 

In a 12 human subjects trial116 comparing the pain response of a 25 gauge 

hypodermic needle to two solid MN arrays of 180 µm and 280 µm long needles a 

sensory questionnaire was undertaken to describe the types of sensation 

experienced by the subjects (Figure 1.15). 

 

Figure 1.15: Results from sensory questionnaire designed to determine the types of sensation 
experienced from human subjects after application of two types of solid MN arrays (180 µm and 280 
µm in height) compared to a 25 gauge hypodermic needle. White and black sections of each bar 
represent reported mild and moderate sensations respectively. 

 

The subjects commonly chose the descriptors of “Pressing” and “Heavy” in relation 

to the application of the MN arrays whereas the terms “Pricking”, “Sharp” and 

“Stabbing” was chosen more frequently and were more often described as moderate 

in intensity rather than mild for the 25G hypodermic needle. “Sharp” was chosen by 

subjects to describe the MN arrays however this was universally classed as a mild 

intensity unlike the hypodermic needle treatment. Results on  the pain rating  of the 

devices using a 100 mm VAS indicated that both the 180 µm and 280 µm MN arrays 

caused statistically significant less pain that the hypodermic needle (p = 0.027 and p 

= 0.0005 respectively). Interestingly, the VAS score of the shorter MNs was 
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significantly greater than the longer MN array (p < 0.05). The investigators suggested 

that this may have been due to the increased force necessary to penetrate the 

stratum corneum using the shorter MN array and so the pressure felt by the subjects 

was greater upon application of the 180 µm array compared to the 280 µm.   

When discussing the pain associated with MNs used to deliver drug or vaccines 

solution, it is useful to consider the stages of administration. The insertion of the MN 

into the skin may cause pain as the skin barrier is broken, however, the subsequent 

delivery of a liquid into the superficial layers of the skin may also cause separate 

discomfort or pain. Van Damme et. al.117 investigated this concept with the MicronJet 

device, which is a hollow MN designed to replace conventional hypodermic needles 

for the delivery of target compounds and vaccines intradermaly rather than 

intramuscularly. The device consists of four inline silicon MNs 450 µm long (Figure 

1.16). The MN array is attached to a plastic adaptor designed to fit a standard luer-

slip disposable syringe conventionally used to deliver vaccines. 



51 
 

 

In this study, one hundred and eighty subjects were allocated evenly into three 

groups with each group receiving either a 0.1 ml dose of a seasonal influenza vaccine 

using the MicronJet device (ID1), a 0.2 ml dose of the vaccine using the MicronJet 

device (ID2) or a 0.5 ml dose of the vaccine using a conventional hypodermic syringe 

administered intramuscularly (IM). The subjects, who were blinded to the type of 

device that was used, were asked to rate the intensity of the pain upon insertion of 

the MN or hypodermic needle, denoted as the “prick-pain”, and then asked to rate 

Figure 1.16: (Above) Micronjet device for attachment to standard syringe. (Below) SEM images of 
silicon MNs from Micronjet device showing morphology of MN tip and array. 
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the pain associated with the injection of the vaccine solution into the skin, denoted 

as the “administration pain”, on a 100 mm VAS 

The mean VAS score for the prick-pain of the ID1 and ID2 groups were 6.6 and 5.5 

respectively whereas the IM group was 12.8. This was a statistically significant 

difference between the ID1 and ID2 group compared to the IM group (p < 0.001). 

However, the mean VAS scores for the administration pain were greater in the ID1 

and ID 2 group (11.5 and 7.2 respectively) than in the IM group (5.6). There was a 

statistically significant difference between the ID1 and IM group (p = 0.001). This 

study highlighted the difference between pain associated with MN insertion 

compared to the administration of liquid formulations using hollow MNs. While the 

insertion of the MN device into the skin was deemed less painful than the insertion 

of a conventional hypodermic needle, the intradermal delivery of a smaller volume 

of a liquid (0.1 ml and 0.2 ml) was more painful than intramuscular delivery of a 

greater volume (0.5 ml). One limitation of this study was that each subject only 

experienced one of the treatment devices. Due to the inherently subjective nature 

of pain, each subject may have given a different rating to the device compared to 

each other and so a paired statistical analysis where every subject received each of 

the treatments may have strengthened the investigation into the pain response. 

However, this may not have been feasible as the efficacy of the influenza vaccine 

administered to each subject was also studied and, therefore, additional treatments 

could not be given to each patient. To overcome this, the additional treatments could 

have contained blank solutions with no vaccine material. 

MNs as long as 2 mm have been investigated for the withdrawal of blood118. A single 

hollow MN fabricated from of silicon was used to withdraw whole blood from 62 

subjects in order to compare its blood glucose measurement accuracy and associated 

pain compared to the standard practice of using a lancet needle and electronic 

handheld glucometer119. The tapered MN was 2 mm in length and 100 µm wide at 

the base and was fabricated with a hollow channel 25 µm in diameter that ran from 

the tip of the MN into the 5 mm2 silicon cuvette housing (Figure 1.17). It was designed 

to allow the passage of the blood from the capillaries near the surface of the skin 

through the MN via capillary action and into the silicon cuvette where the 
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concentration of glucose within the blood sample could be determined using optical 

or electrochemical means.  

 

 

In order to compare the pain associated with the insertion of the single MN device 

to the standard finger prick method, each of the 62 subjects (41 diabetics and 21 non-

diabetics) were exposed to three treatments. The first was using a standard lancet to 

pierce the fingertip to obtain a small volume of capillary blood. The second was the 

administration of the lancet into the arm of the subject and the third was the 

administration of the silicon MN device into the arm. Each subject was asked to rate 

the pain associated with each treatment from 1 – 5 with the following descriptors: 1 

– Barely noticeable, 2 – Slightly painful, 3 – Somewhat painful, 4 – Painful, 5 – Very 

painful. As a significant number of subjects (15%) reported not feeling the silicon MN 

inserting into the skin at all, a rating of 0.5 – ‘Could not feel insertion’, was added to 

the scoring system in order to reflect this.  

Figure 1.17: (Left) Diagram of single silicon MN with cuvette for blood collection and glass window to 
view sample. (Right) SEM image of MN tip with opening for fluid withdrawal 
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Figure 1.18: Pain scores after insertion of ametal lancet needle in finger and arm compared to hollow 
silicon MN in arm. 

 

As can be seen in Figure 1.18, the treatment with the highest mean pain rating was 

the lancet applied to the fingertip (2.3), followed by the lancet applied to the arm 

(1.7) and the least painful was the MN device applied to the arm (1.2). Looking at the 

individual data (Figure 1.19), it was observed that 58% of the subjects responded that 

the silicon MN was barely noticeable whereas less subjects gave this response for the 

lancet in the arm (45%) and even less for the lancet in the fingertip (27%). In fact, 

15% of the subjects responded that they did not notice insertion of the single MN 

into the arm at all.  
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Figure 1.19: Individual break down of pain perception of lancet needle in finger and arm compared to 
hollow silicon MN in arm 

 

1.10 Glucose Responsive MNs for delivery 

Hu et al.120 aimed to produce a detection-delivery system comprising a glucose 

responsive MN that modulated the release of insulin in a so called “closed-loop” 

system. This closed loop system of insulin delivery typically involved glucose 

monitoring coupled to deliver adequate quantities of insulin in order to maintain 

proper glucose levels over prolonged periods without causing hypoglycaemia though 

insulin overdose. Hu et al. incorporated H2O2 sensitive polymersomes containing GOx 

and insulin into the tips of a MN array composed of crosslinked HA. The 

polymersomes were formed from a block copolymer incorporating polyethylene 

glycol (PEG) and a phenylboronic ester-conjugated polyserine which was designed to 

degrade in response to increased concentrations of H2O2 caused by the oxidation of 

glucose by GOx contained within the polymersome. Therefore, in hyperglycaemic 

conditions, the glucose was oxidised to produce increased levels of H2O2 which 

caused the disassembly of the polymersome. This enabled the release of insulin and 

subsequent delivery into the skin to ultimately return the body to normal glycaemia.  



56 
 

When administered to streptozocin-induced type 1 diabetic mice the MNs containing 

the GOx and insulin loaded polymersomes (MN[PV(E+I)]) reduced the blood 

concentration of glucose to approximately 90mg/dL (5.0 mM) after 1hr and 

maintained this normal glycaemia for 5 hours compared to blank MNs (MN[HA]) 

which had no significant effect (Figure 1.20).  

 

 

In contrast, MNs loaded with the equivalent amount of insulin (MN[I]) had a 

significantly reduced glucose lowering effect, achieving a blood concentration of 

approximately 400 – 500 mg/dL (22 – 27 mM).  While MNs loaded with 

polymersomes containing insulin only (MN[PV(I)]) had a comparable glucose 

lowering effect to the dual loaded polymersome containing MNs,   the effect was 

significantly shorter lived (2 hours).   When diabetic mice were treated with the MN 

arrays and subsequently challenged with an intraperitoneal (IP) injection of glucose, 

the MN array containing GOx / insulin had a superior glucose lowering effect 

compared to the MN array containing insulin only, and more closely resembled the 

Figure 1.20: (Left) Schematic of HA MN array loaded with H2O2 responsive liposomes containing insulin. 
(Top right) Blood glucose lowering effect of HA MNs loaded with H2O2 responsive polymersomes 
containing insulin (MN[PV(E+I)] compared to blank MNs (MN[HA]), insulin loaded MNs (MN[I]) and MNs 
with insulin loaded polymersomes (MN[PV(I)]) in diabetic mice. (Bottom right) Blood glucose level in 
diabetes mice wearing MN[I] or MN[PV(E+I)]) patches challenged with IP glucose injection compared to 
healthy mice. 
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response to glucose in healthy mice (Figure 1.20) However, it was observed the blood 

glucose was still greater than the healthy mice over the time period of the study (160 

min).  

A further development by the same research group incorporated a hypoxia sensitive 

nitroimidazole group via a H2O2 sensitive thioether linkage in the same PEG / 

poly(serine) co-polymer matrix used to formulate the previous MNs121. Due to the 

consumption of oxygen by GOx mediated oxidation of glucose, hypoxic conditions 

are generated in the local microenvironment. This triggered the conversion of 2-

nitrimidazole within the polymersomes to 2-aminoimidazole via native 

nitroreductases, which is more hydrophilic thus promoting polymersome 

disassembly and insulin release (Figure 1.21). Furthermore, the production of H2O2 

from the oxidation of glucose triggered a second mechanism of polymersome 

disassembly as the thioether moiety of the copolymer reacts with the H2O2 to form 

water soluble sulfone groups. In this way, high glucose concentrations within the ISF 

triggered the release of insulin from the polymersome loaded MNs. The in vivo 

efficacy of the MNs was demonstrated as before in diabetic mice, where the 

administration of MNs containing the dual sensitive polymersome was decreased the 

blood glucose concentration after 1 hour and maintained normal glycaemia for 

approximately 6 hours (Figure 1.21), which was a superior duration of action than 

Figure 1.21: (Left) Blood glucose levels in diabetic mice after application of MNs loaded with dual 
responsive polymersomes containing insulin and enzyme (d-GRP(E+I)) or MNs loaded with d-GRPs 
containing insulin (d-GRP(I)) compared to PBS control or SC injection of insulin (Right) Effect on blood 
glucose due to second treatment after initial application of MN containing d-GRP(E+I). The second 
treatment consisted of either MN containing d-GRP(I), a second MN containing d-GRP(E+I) or a  SC 
insulin. 



58 
 

the equivalent dose of free insulin. Moreover, in a separate experiment, application 

of a second polymersome loaded MN 3 hours after an initial MN was applied, did not 

cause hypoglycaemia to occur in diabetic mice, whereas an injection with the 

equivalent dose of free insulin caused rapid hypoglycaemia.   

More recently, MNs based on crosslinked PVA have been reported to provide glucose 

responsive delivery of insulin to diabetic mice122. The MNs consisted of a crosslinked 

PVA gel core embedded with GOx and insulin coated with a PVA shell containing 

catalase. The PVA core was gelated with a H2O2 labile crosslinker based on 

phenylboronic acid thus providing a mechanism of gel degradation in hyperglycaemia 

as before. Similarly, the insulin contained within the core was covalently attached to 

the PVA backbone with the same H2O2 labile thioether linker therefore enabling 

elective insulin release in hyperglycaemia. The purpose of the catalase embedded 

shell of each MN was to provide a H2O2 scavenging layer in order to reduce local 

inflammation to the skin123. Diabetic murine experiments with the MNs showed their 

capability to decrease blood glucose to normal levels and maintain normal glycaemia 

for several hours without causing hypoglycaemia even after repeated application.  

Xu et al.124 have also utilised a H2O2 sensitive mechanism to modulate the release of 

insulin from mesoporous silica nanoparticles loaded into PVP MNs. GOx contained in 

the silica nanoparticles generated H2O2 that hydrolysed phenylboronic esters present 

in the structure, causing nanoparticle degradation and subsequent release of insulin 

that was stored in the nanopores of the silica nanoparticles. In vivo efficacy studies 

in diabetic mice showed a successful hypoglycaemic effect of the MNs due to insulin 

release and the MNs were able to maintain normal glycaemia in the mice for 4.5 

hours compared to 2 hours for a subcutaneous injection of insulin.  

 

1.11 MNs for single measurements of ISF glucose 

An array of hollow MNs was produced from monocrystalline silicon by Mukerjee et 

al.125 that demonstrated successful ISF withdrawal from a human subject with a 

subsequent detection of the ISF glucose demonstrated.  
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The sole driving force behind the ISF extraction was capillary action through the 20 x 

20 array of “snake fang” designed MNs that ranged from 250 – 350 µm in length with 

300 µm centre-to-centre interspacing (Figure 1.22). Upon application, the MN array 

remained embedded in the skin due to the friction between the MN projections and 

the upper layers of the epidermis. Initial in vitro experiments using a wide range of 

liquids such as glycerol, acetone and distilled water showed successful transport of 

liquid from the MN tips through capillary channels that were etched into device to a 

fluid reservoir.  

 

When applied to a human subject’s skin, ISF was observed to travel from the MN 

array through the capillaries and into the reservoir after 15 – 20 minutes. The fluid 

was confirmed as ISF through examination using light microscopy which confirmed 

there was no visible cellular material as would be in whole blood. Additionally, a small 

section of a colorimetric glucose test strip was placed in contact with the fluid after 

extraction (Figure 1.23).  

 

 

Figure 1.22: (Left) SEM image of hollow silicon MN array with “snake fang” design. (Right) Application 
of hollow silicon MN array to finger. 
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A blue colour change was observed after the test period which confirmed the 

presence of glucose in the ISF at an approximate concentration of 80 - 120 mg / dL 

(4.4 – 6.7 mM). Application of a solid MN array followed by collection of ISF using a 

hydrogel patch was used to monitor post-prandial glucose in human subjects within 

the ISF in order to compare against plasma glucose126. The polycarbonate MN 

consisted of a 305 array of 300 µm long MNs and was applied to a total of 47 subjects 

using a spring-loaded applicator with a speed of approximately 6 m/s. Of the 47 

subjects tested, 37 were diabetic and 10 were non-diabetic. After MN application at 

two sites on each subject, a hydrogel patch composed of PVA was placed over the 

pre-treated area and left in place for 2 hours before subsequent analysis of the 

glucose using a commercial fluorescent based assay. From plasma glucose 

measurement taken throughout the study, the area under the curve (AUC) of glucose 

predicted from the ISF was shown to correlate well to the plasma glucose AUC (R = 

0.93). However, the rapid variation in plasma glucose could not be predicted by the 

ISF due to a lag time between the changes in the plasma compared to the ISF.  

Hydrogel forming MNs demonstrated successful extraction of ISF by Caffarel-

Salvador et al.127. Using optical coherence tomography (OCT), it was confirmed that 

the hydrogel MNs became swollen with ISF after insertion into both rats and human 

volunteers (Figure 1.24). In this way, it was proposed that the analytes contained 

within the ISF in the MNs could be measured to provide a minimally invasive and 

blood free mechanism of therapeutic drug and glucose monitoring. 

Figure 1.23: Photograph of segment of glucose test strip placed in ISF collection 
reservoir of hollow silicon MN array. (Left) Before extraction of ISF. (Right) After 
extraction of ISF 
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Figure 1.24: Swollen PMVE/MAH hydrogel MN after 1 h application to (A) back of rat (B) human 
volunteer’s forearm. OCT images of PMVE/MA hydrogel MN in forearm of human volunteer (C) upon 
application (D) 1 h after application. 

 

The MNs, composed of hydrolysed PMVE/MAH (11.1% w/w) crosslinked with PEG 

(5.6% w/w) were first applied to neonatal porcine skin in a Franz diffusion cell set-up 

that had been bathed on the underside with phosphate buffered saline (PBS) 

containing various concentrations of either caffeine, theophylline or glucose. For 

glucose, test solutions of 4.0 mM and 15.0 mM glucose were used, possibly to 

represent normal glycaemia and hyperglycaemia respectively. 5 mins and 60 mins 

post application, the glucose within the MNs was quantified using a proprietary kit 

after allowing the analytes contained within each MN to diffuse from the hydrogel 

into a volume of distilled water. After only 5 mins there was a detectable quantity of 

glucose within both MN arrays with a concentration of 19.46 nM in the 4.0 mM 

group, however there was no significant difference in the concentration measured in 
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the MNs exposed to the 15 mM glucose compared to MNs exposed to 4.0 mM 

glucose at either 5 mins or 60 mins post application.  

In order to investigate the ability of the hydrogel MN to track changes in the ISF over 

time, MNs were also applied to human volunteers after ingestion of 75g of glucose 

powder. The concentration of glucose in the MNs was compared to plasma blood 

glucose determined using an electronic glucometer from fingertip blood samples. 

MNs were applied for one hour before the ingestion of the glucose (-1 – 0 h), for the 

first hour post ingestion (0 – 1 h), the second hour (1 – 2 h), the third hour (2 – 3 h) 

and for the entire three hours after ingestion (0 – 3h) (Figure 1.25). 

 

Figure 1.25: Concentrations of glucose measured in PMVE/MAH hydrogel MNs applied to human 
volunteers to measure ISF glucose compared to blood glucose measurements after ingestion of 75g 
of glucose at 0h time point. 

 

While the concentrations within the MN were all significantly different than the 

plasma blood glucose concentrations, it was confirmed that they were capable of 

extracting ISF from the skin and the glucose could be quantified. The peak plasma 

glucose was observed 1 hour after ingestion of the glucose powder, with the peak ISF 

concentration 3 hours post ingestion. This demonstrated a lag time between changes 

in the plasma glucose and changes to the ISF glucose concentration of approximately 

2 hours. This lag time has been observed in previous studies126.  
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An alternative approach for the collection of analytes from hydrogel forming MNs 

was suggested by Romanyuk et al. to enable a higher throughput of samples128. 

Loading a model analyte, sulforhodamine into the tips of MN arrays composed of 

PMVE/MA (15% w/w) crosslinked with PEG (7.5% w/w), various methods of analyte 

recovery were investigated. Through attachment of the preloaded MN arrays to the 

underside of the lids of microtubes designed for centrifugation, the investigators 

added 100 µL of distilled water to each MN and incubated for 1, 5 and 10 mins 

followed by centrifugation for 20 s at 300G. After one centrifugation cycle, the 

fraction of analyte recovered was found to be dependent on the incubation time, i.e. 

more analyte was recovered after longer incubation periods, and 100% of the analyte 

was recovered after three successive cycles of centrifugation, independent of 

incubation time (Figure 1.26). A second method of analyte recovery more suited to 

high throughput of samples and subsequent analysis involved the use of microplates. 

The MNs were each fixed to a hard plastic backing material and placed on to the open 

top of microplates so as to act as lids for each well. The MNs were situated on the 

underside of plastic lids so they protruded into each well, which was filled with an 

aliquot of distilled water. The plates were then inverted in order to move the water 

into contact with each MN to allow the recovery of the model analytes into the 

distilled water. After incubation, the plates were returned to the original orientation 

and the MNs were removed. In this way, a large number of MNs could be processed 

simultaneously and the analyte solution could be further analysed in the microplate 

through enzymatic, UV/Vis or fluorescent assays as required.  
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Figure 1.26: Percentage recovery of model analyte from PMVE/MAH hydrogel MNs utilising successive 
centrifugation cycles after 1 min, 5 min or 10 min elution times. 

 

Another polymer used to produce hydrogel forming MNs is crosslinked HA129 due to 

its excellent swelling capability and biocompatibility. In order to form a swellable 

hydrogel from water soluble HA, the structure was chemically modified through 

functionalisation with methacrylate groups130, which can undergo facile 

polymerisation to form covalent crosslinks between the polymer chains. This enabled 

the polymer to swell and absorb large quantities of water instead of dissolving. 

Polymerisation was achieved through free radical catalysis with a photoinitiator 

activated with UV light.  The degree of crosslinking enabled control of the swelling 

capability of the MNs prepared from this crosslinked HA, with MNs irradiated for 

longer periods becoming more densely crosslinked and thus capable of absorbing 

less water from agarose gel, which was used as a tissue surrogate (Figure 1.27). 
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Figure 1.27: Swelling ratio of crosslinked HA MNs applied to agarose gels. MNs were crosslinked for 
either 3 mins (HAMA-MN-CL3), 5 mins (HAMA-MN-CL5), 10 mins (HAMA-MN-CL10) or 15 mins 
(HAMA-MN-CL15). 

 

After successful extraction and recovery of the model compounds rhodamine B, 

glucose and cholesterol from the agarose gel tissue surrogate, the investigators 

evaluated the effectiveness of the MNs in a mouse model.  Four 10 x 10 arrays with 

a MN height of 800 µm were pressed into the skin on the back of mice with thumb 

pressure. After 1 min, the total ISF extracted by MNs was measured to be 1.4 ± 0.3 

mg. After 10 min, the mass of ISF was 2.3 ± 0.4 mg. This was substantially greater 

than the amount of ISF extracted in 1 hour reported by Romanyuk et. al.128 using 

PMVE/MA (15.0%) and PEG (7.5%) MN arrays. The mice were administered an IP 

injection of glucose after 1 hour followed by an IP injection of insulin 1 hour later. 

MNs were applied 30 mins after each injection in order to determine if the change in 

glucose in the blood stream was observed in the ISF. In order to observe a change in 

the cholesterol, mice were fed on a high fat diet for up to three weeks prior to the 

experiment. After each 10 mins application the MNs were removed and the quantity 

of glucose and cholesterol were determined using a commercial glucose assay and 

cholesterol quantification kit respectively (Figure 1.28).  
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Figure 1.28: (Left) ISF and blood glucose concentration measured by application of crosslinked HA MN 
or blood glucose meter respectively in mice which were administered IP glucose followed 1 h later by 
IP insulin. (Right) ISF cholesterol and blood cholesterol measured by crosslinked HA MN or blood 
cholesterol meter respectively over 21 days of a high fat diet in order to increase cholesterol levels. 

 

It was demonstrated that the crosslinked HA MNs were capable of providing a 

minimally invasive method to determine the concentration of glucose and 

cholesterol in the mice with good correlations between ISF glucose concentrations 

and plasma glucose measured. The ISF cholesterol was consistently lower than the 

plasma cholesterol and, therefore, the investigators suggested that calibration would 

be necessary in order to indirectly determine the plasma cholesterol from ISF 

measurements.  

 

1.12 Flash glucose monitoring device  

The Freestyle Libre is a flash glucose monitor that can provide a measurement of the 

glucose concentration in the ISF present in the dermal layer of the skin131. The sensor 

of the device is a filament that penetrates the epidermis skin layer and becomes 

embedded in the dermal layer to a depth of 5 mm (Figure 1.29). At this depth, the 

ISF is in equilibrium with the glucose present in the plasma with a lag time of 

approximately 5 minutes.  Each sensor module can remain embedded in the skin for 

14 days before being removed and replaced by a new unit. To display the ISF glucose 

concentration, a companion device or smart phone can be used to wirelessly transfer 

the data stored within the sensor unit to display to the user.  
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Figure 1.29: Schematic of Freestyle Libre sensor device embedded in skin to provide flash glucose 
measurements over 14 days131 

 

The largest trial of the Freestyle Libre device to date is the IMPACT study132 which 

included 242 participants with Type 1 diabetes. The aim of the multicentre, 

prospective, non-masked trial was to compare the rate of hypoglycaemic events in 

120 participants using the Freestyle Libre to 121 participants that used conventional 

SMBG techniques over 6 months. A 30% or greater reduction in hypoglycaemia was 

predetermined as clinically relevant by the American Diabetes Association133. The 

mean time spent in hypoglycaemia for the Freestyle group decreased from 3.38 

h/day to 2.03 h/day whereas the control group decreased from 3.44 h/day to 3.27 

h/day after 6 months. Adjusting for the small decrease observed in the control group, 

the mean time in hypoglycaemia for the Freestyle Libre group reduced by 38% and 

so was deemed clinically relevant. There were four allergy related adverse events 

and four severe insertion site symptoms. Other adverse events were mild or 

moderate erythema or oedema.  

Another trial investigated the accuracy of the ISF glucose measurements to the blood 

glucose measurements obtained in 72 participants with either Type 1 or Type 2 

diabetes over 14 days134. The sensor was initially factory calibrated and not further 

calibrated with blood glucose measurements throughout the trial. Comparison 

between approximately 8 daily blood glucose readings to ISF glucose revealed a 

mean absolute difference of 11.4% and a mean lag time of 4.5 - 4.8 mins. On days 2, 

7 and 14 the percentage of readings within the Consensus Error Grid Zone A was 
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88.4%, 89.2%, and 85.2% respectively, with 99.7% of reading within Zone A and B 

(Figure 1.30). As of November 2017 the Freestyle Libre is available on the NHS after 

initiation under diabetic specialist teams135.  

 

Figure 1.30: Consensus Analysis of Freestyle Libre ISF glucose readings and blood glucose readings 
with in-built glucose monitor over 14 days continuous use134. 
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1.13 Aims and Objectives 

The main aim of the work carried out in this thesis was to investigate the feasibility 

of a MN based approach to measure ISF glucose concentration. The specific 

objectives were: 

1. To determine the most effective MN for the rapid extraction of glucose 

solution. 

2. To develop and optimise an optical detection system for glucose that would 

provide a colorimetric response to glucose concentration. 

3. To identify a suitable housing for the optical detection system that permits 

integration with the MN baseplate.  

4. To test the feasibility of the resulting MN-sensor constructs for their ability to 

extract and determine glucose concentrations from the colour change in a 

timely manner. 
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Chapter 2 

2.0 Materials and Methods 

2.1 General 

2.1.1 Materials, Equipment and Reagents 

All chemicals were purchased from Sigma-Aldrich (Gillingham, UK) and used without 

further purification unless otherwise indicated. Solvents were also purchased from 

Sigma-Aldrich (Gillingham, UK). Poly(dimethylsiloxane) (PDMS) MN templates were 

purchased from Micropoint Technologies Pte Ltd. (Singapore). Custom centrifuge 

inserts to house the MN templates were fabricated from polypropylene. A Form 1+ 

SLA printer (Formlabs, MA USA) was used to print all CAD schematics using Formlabs’ 

proprietary clear resin. For all digital photography a Canon EOS 100D DLSR camera 

(Canon Digital, Tokyo, Japan) was used with a Canon EFS 18 - 55mm lens. The 

following settings were used in manual mode - shutter speed: 1/30, aperture f/5.6 

and ISO 400. An intervalometer was used with the camera for repeated photography 

at set time points. For axial load tests a single column load tester Instron® 3344 

(Buckinghamshire, UK) was utilised. A Varian Cary UV-Vis spectrophotometer was 

used to obtain al UV-Vis spectroscopy data with a 10 mm pathlength quartz cuvette. 

UV irradiation of polymer solution was carried out using a UVGL-58 handheld UV 

lamp (UVP, Cambridge, UK). pH measurements were obtained using an electronic pH 

meter (Hanna Instruments). Hydrochloric acid and sodium hydroxide solutions were 

used to lower and increase pH respectively. 

2.2 Polymeric Hydrogel Microneedles for the Extraction and Optical Detection of 

Glucose 

2.2.1 Swelling studies of PMVE/MA hydrogels crosslinked with PEG 

Pre-gel co-polymer blends were prepared consisting of PMVE/MA (20% w/w), PEG 

(MW 10,000 Da) (7.5% w/w) and increasing quantities of sodium carbonate (0-5%). 

PMVE/MA was added to distilled water and heated at 90°C for 1 h until fully 

dissolved. After cooling to 25oC, PEG and sodium carbonate were added and the 

solution stirred to obtain a homogenous pre-gel blend. To remove air bubbles, the 
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pre-gel blend was centrifuged at 1000 x g for 15 mins and then poured into square 

13 mm x 13 mm silicon moulds. The gels were dried at ambient temperature for 48 

h, removed from the moulds and cured at 80°C for 24 h to induce chemical 

crosslinking by esterification. To determine the swelling capability, each gel square 

was submerged in PBS (20 mL) at 25oC. The gel was removed after 0.5 h, 1 h, 2 h and 

5 h, surface dried using filter paper and weighed. A plot of percentage swelling over 

time was generated for each formulation (Figure 3.3). 

2.2.2 Manufacture of MNs prepared using polymer 2 

Polymer 2, consisting of PMVE/MA (20% w/w), PEG (MW 10,000 Da) (7.5% w/w) and 

sodium carbonate (3% w/w) was used to prepare MNs. The pre-gel blend was 

prepared as discussed in Section 2.2.1. This was then poured into silicon MN 

templates (Micropoint Technologies, Singapore) so as to exclude air bubble 

formation. The templates were centrifuged in a custom holder at 800 x g for 20 mins 

and allowed to dry at ambient temperature for 48 h. The MNs were removed from 

the templates and placed in an oven at 80°C for 24 hours to induce chemical 

crosslinking by esterification and yield hydrogel MNs. 

Double filled MNs were produced by filling templates with 60 mg of polymer 2 before 

centrifugation at 800 x g for 20 mins. The templates were allowed to dry at room 

temperature for 24 h. A second addition of polymer 2 was added to each mould using 

a pipette until each mould was slightly overfilled. They were allowed to dry for a 

further 24 h at room temperature followed by heating in an oven at 80°C. The MNs 

were then removed from the moulds and the excess dried polymer was trimmed 

using a scalpel to yield MNs with a smooth backplate. Ten of the single and double 

filled MNs were weighed in order to determine the uniformity of weight using each 

method.  

2.2.3 Development of the glucose sensor 

For all photophysical experiments, stock solutions of 3,3',5,5'-Tetramethylbenzidine 

(TMB) in ethanol and D-Glucose in de-ionised water were prepared. The aqueous 

glucose stock was allowed to mutarotate for at least 2 h. Unless otherwise specified, 

for UV/Vis studies a solution of GOx/HRP (425 units/L) and TMB (42 µM) in sodium 

acetate buffer (pH 5.4) was used as the enzyme-dye system. Each 1 ml aliquot of the 
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enzyme-dye system was spiked with an aqueous glucose solution in order to give a 

final concentration of 200 µM glucose. The absorbance spectra between 200 nm – 

800 nm were recorded at 60 s intervals over the course of 15 min (Figure 3.10) 

To investigate how to modify the rate of blue charge transfer complex formation in 

Figure 3.12, four different solutions were prepared with a final concentration of 

either 850 U/L GOx/HRP and 84 µM TMB, 850 U/L GOx/HRP and 42 µM TMB, 425 U/L 

GOx/HRP and 84 µM TMB or 425 U/L GOx/HRP and 42 µM TMB in sodium acetate 

buffer (pH 5.4). Each solution was spiked to contain a final concertation of 200 µM 

glucose. The UV/Vis absorbance at 650 nm was measured at 60 s intervals for 15 

mins.  

In order to test the response to a range of glucose concentrations (Figure 3.13), eight 

solutions containing the enzyme-dye system (GOx/HRP (425 units/L) TMB (42 µM)) 

were spiked with aqueous glucose solutions in order to contain a final concentration 

of either 0 µM, 10 µM, 50 µM, 100 µM, 150 µM, 200 µM, 300 µM, 500 µM, 750 µM 

or 1000 µM glucose. The absorbance spectrum for each was recorded after 8 mins. 

To increase the linear range of the sensor, solutions containing 42 µM TMB in sodium 

acetate buffer (pH 5.4) and either 425 U/L, 212 U/L or 106 U/L GOx/HRP were spiked 

with glucose in order to obtain final concentrations of 0 µM, 10 µM, 50 µM, 100 µM, 

150 µM, 200 µM, 300 µM, 500 µM, 750 µM or 1000 µM glucose. The absorbance of 

each solution at 650 nm was recorded after 8 mins (Figure 3.16). 

2.2.4 Investigation of glucose sensor performance of polymer 2  

Pre-gel blends of polymer 2 were prepared as described in Section 2.2.1. Before 

casting into moulds, a 1 ml aliquot of the polymer 2 pre gel blend was pipetted on to 

a weigh boat and photographed 5 mins and 10 mins after addition of a 10 mM 

glucose solution (100 µL) (Figure 3.17). 

A MN composed of polymer 2 prepared using the method detailed in Section 2.2.2 

was submerged in a 3 mL solution containing 425 U/L GOx/HRP and 42 µM TMB in 

sodium acetate buffer. After 2 h the MN had imbibed the solution and any surface 

solution removed with filter paper. A 100 µL aliquot of 10 mM glucose solution was 
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pipetted on to the surface of the swollen MN and imaged after 4 and 8 mins (Figure 

3.17). 

2.2.5 Synthesis of PMVE/MA and TPME backplates 

PVME/MA (2g) was dissolved in distilled water and heated to 90°C for 1h. Upon 

cooling, tri(propyleneglycol) monomethyl ether TPME (1g) was added and the pH 

adjusted to 5.4 with 3 M NaOH. The final weight of the solution was then made up to 

10 g with distilled water. GOx/HRP and TMB solutions were added to the gel to obtain 

final concentrations of 425 U/L and 42 µM respectively. To remove air bubbles the 

pre-gel blend was centrifuged at 1000 x g for 15 mins and then poured into square 

silicon moulds with 10 mm x 10 mm dimensions. The gel was allowed to set overnight 

in a fume hood at 25 °C. For attachment to hydrogel MNs, a small quantity of distilled 

water (1 µL) was added to the centre of the backplate before placing on to the back 

of the MN and dried at 25 °C in a fume hood. 

2.2.6 In vitro extraction of glucose from simulated ISF 

MNs were fabricated from polymer 2 as detailed in Section 2.2.2 and interfaced with 

sensor embedded TPME backplates as described in Section 2.2.5. The MN 

projections were penetrated through a single layer of Parafilm using thumb pressure 

and placed on the surface of glucose solutions (0 – 10 mM) (PBS) to start the 

extraction procedure. Photographs of the backplates were taken over 1 h (Figure 

3.21). 

2.2.7 Fabrication of sensor embedded paper backplates 

Whatman No 1 paper was used to create square backplates measuring 10 mm x 10 

mm. Each backplate was submerged in 3.5 mL of a 50:50 distilled water : ethanol 

solution containing GOx/HRP and TMB for 5 min. In order to optimise the quantities 

of GOx/HRP and TMB, four formulations (A-D) contained different amount of enzyme 

but the same quantity of TMB were prepared. The quantities for Formulation A-D are 

listed in Table 3.1. The backplates were then removed and allowed to dry at 25 °C for 

2 h. 
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2.3 Single Hollow Microneedle Device for the Extraction and Colorimetric Detection of 

Glucose 

2.3.1 3D printing of solid MNs and MN master moulds using Form 1+ printer 

CAD schematics of MNs for 3D printing were initially created using SketchUp 

(Trimble) in order to produce STL (stereolithography) files that are native to 3D 

printing software and were suitable for the Form 1+ printer. In order to repair any 

issues with the CAD schematics before printing, the files were analysed using 

NetFabb basic (Autodesk) and default repairs were carried out if necessary.  

The Form 1+ printer resolution was set to 0.025 mm. After STL files were loaded into 

the Formlabs printer software, default supports were added to the models and 

modified if necessary to avoid creating points of contact between the key areas of 

the model and the support (e.g. MN tips or inner areas of moulds). After printing, 

models were removed from supports using cutting pliers and washed twice in 

isopropanol and dried in an oven at 50 °C for 1 h.  

2.3.2 Production of negative silicone moulds for hollow MN 

A 30G needle was inserted into the 3D printed mould until the tip came into contact 

with the attached lid. The lid was removed and the needle was fixed in place with 

cyanoacrylate glue. Room temperature vulcanising (RTV) silicone (Viscolo 13, TOMPS 

UK) was used to create a negative mould of the master mould with the attached 

needle (Figure 2.1). The silicon was prepared according to the manufacturer’s 

instructions. Equal amounts by volume of part A and B were thoroughly mixed in a 

50 ml polypropylene tube using a stirring rod. The bubbles introduced from the 

mixing were removed by placing the open tube in an upright position in a vacuum 

oven at RT. A vacuum was applied to the oven for 30 mins until no visible bubbles 

remained. The silicone was then taken up into a 5 ml syringe which was subsequently 

attached to the needle hub in the 3D printed mould. The silicone was pushed through 

the needle until a small quantity of the liquid exuded from the tip. The syringe was 

then removed and the mould was placed on an even surface. The remaining silicone 

from the 50 ml centrifuge tube was then poured into the mould until it was 

completely filled, avoiding the introduction of air bubbles. The silicone was left to 

crosslink for 16 h at 25°C. After fully solidifying, the silicone negative mould was 
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peeled away from the 3D printed master mould, ensuring the thin line of silicone that 

protruded into the barrel of the needle remained attached to the base of the 

negative mould. The mould was washed with distilled water and then methanol 

before being allowed to dry at 40 °C for 60 mins. 

 

Figure 2.1 Fabrication of silicone negative mould for production of hollow polymer MN 

 

2.3.3 Single hollow polymer MN  

A stock solution containing glycidyl methacrylate (GMA) (10 ml), trimethylolpropane 

trimethacrylate (TRIM) (5.23 ml), triethylene glycol dimethacrylate (TEGDMA) (15.7 

ml) and Irgacure 184 (0.1 g) was prepared. If not used immediately, the solution was 

wrapped in aluminium foil to avoid inadvertent polymerisation from ambient light 

and refrigerated at 5 °C overnight. An aliquot of 150 µL of the solution was added to 

each of the negative silicone moulds while the length of silicone that replicated the 

inner bore of the needle was held upright at 90°C using a small scaffold structure. To 

ensure the moulds were completely filled, they were placed in a vacuum oven at RT 

and a vacuum was applied for 60 mins to force the liquid into the tip of the moulds. 

The monomer mix was then polymerised using a 365nm emitting UV lamp (6W, 50Hz, 

0.12 A) for 30 mins until the polymer mix had fully solidified. The hollow MNs were 

then removed from each mould and washed with methanol before drying in an oven 

at 40 °C for 60 mins.  

2.3.4 Kinetics of Methylene Blue extraction using the hollow MN device. 

An aqueous solution (30 mL) of methylene blue (MB) at a concentration of 1.0 mM 

was added to a plastic 90 mm petri dish. A hollow polymer MN was pierced through 

a single layer of Parafilm to simulate skin penetration. Segments of Whatman No. 1 

filter paper were cut into 5 mm2 squares and attached to the back each MN device. 

The MNs were then placed on the surface of the MB solution ad photographs of the 
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paper square backplate were taken at 1 s intervals for 5 s in order to capture the 

extraction of the coloured solution (Figure 4.8).   

2.3.5 Mechanical testing of the hollow MN device 

The magnitude of the force required to fracture the single MN in the hollow polymer 

MNs was measured using an axial load test station with a 50 N load cell. The MNs 

were fixed to a horizontal metal block using double sided adhesive tape. To enable 

sufficient adhesion to the tape and to avoid any lateral movement during axial 

compression, the backplate of each MN was first roughened using sandpaper before 

application of the adhesive tape. A metal rod with a diameter of 4 mm was driven 

downwards on to the MN tip at a rate of 0.01 mm/s until fracture of the MN occurred. 

This was monitored using an optical microscope to visually confirm that the rod was 

lowered directly on to the MN tip and that breakage occurred. 

2.3.6 Measurement of ChromB in MB soaked paper backplates 

Stock solutions of MB (0-1 mM) in distilled water were prepared. Blank paper 

backplates were submerged in each solution, removed and allowed to dry at room 

temperature. Photographs of each backplate were recorded and the ChromB values 

calculated. This was achieved by obtaining the red (R), green (G) and blue (B) values 

from the photograph of the backplate using ImageJ with the RGB measure plugin. 

The ChromB was calculated by dividing the B value by the sum of the R, G and B 

values. All measurements were background corrected by subtracting the ChromB 

value of a white paper square submerged in distilled water and dried. In the case of 

sensor embedded glucose responsive backplates, the ChromB values were calculated 

from digital photographs of each backplate after an aliquot of glucose solution in PBS 

was added or the MN device had extracted glucose solution into the backplate. 

 

  



77 
 

2.4 Glucose detection using a hollow metal microneedle interfaced with an optical 

glucose sensor: the use of antioxidants to modulate signal response. 

2.4.1 Fabrication of custom needle holder and metal MN 

A custom made needle holder was fabricated from polypropylene plastic (Figure 5.3). 

The upper plate (diameter 30 mm) was cut to a thickness of 2 mm and four holes 

were drilled through the plate in a cross pattern using 200 µm diameter steel drill bit. 

A circular hole (diameter 30 mm) was made in the base plate in order to hold the 

upper plate in place when placed together. A screw was used to ensure a tight 

connection between the upper plate and base plate.  

BD Micro-Fine ™ Ultra 32G needles were removed from their outer packaging, placed 

in 100 mL of acetone and stirred for 4 hours in order to dissolve the adhesive holding 

the metal needles to their plastic housing. The needles could then be removed from 

the housing using tweezers. A needle was placed in each of the four holes on the 

upper plate of the needle holder, with the shorter bevelled end pointing downwards 

(Figure 5.4). The upper plate was then screwed on to the baseplate. A pair of cutting 

pliers was used to cut the metal needles to approximately 4 mm in length before the 

remaining length of needle was removed using abrasive sand paper. P600 grade 

paper was used to remove the majority of the excess material before P1000 grade 

paper was used to remove the final 0.5 mm to avoid unwanted burrs or imperfections 

along the edges of the needle that could form blockages. The holder was then 

disassembled and the needles were removed from the upper plate using tweezers. 

100 µm diameter steel wire was threaded through each of the cut needles to remove 

material that had plugged the lumen and to ensure they remained open. They were 

then rinsed with acetone and dried at RT for 10 mins to yield 2 mm long 32G needles. 

2.4.2 Fabrication of the metal MN and photopolymer baseplate 

A master mould was 3D printed using the Form 1+ printer in clear resin (Figure 2.2a). 

RTV silicone was prepared as detailed in Section 2.3.2, poured into the master mould 

and allowed to cure for 16 h at 25°C. It was then removed from the master, washed 

with ethanol and dried to yield the negative silicone mould for the photopolymer 

baseplate. 100 µm diameter wire was threaded through a 32G BD needle which was 

pierced through the centre of the negative mould so that the wire was perpendicular 
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to the surface of the mould. The full size needle was then removed, leaving the wire 

in place.  A 2 mm long needle was then threaded down the wire with the needle point 

facing upwards until the lower end reached the silicone mould (Figure 2.2b). 200 µL 

of TRIM containing 0.1% w/w of Irgacure 184 as a photoinitiator was pipetted into 

the mould and polymerised by placing under a 365nm emitting UV lamp (6W, 50Hz, 

0.12 A) for 60 mins. The MN and baseplate was then removed from the mould, 

washed with methanol and dried at 60°C for 10 mins.  

 

 

 

 

(a) 

(b) 

Figure 2.22: (a) Master mould produced using Clear resin (proprietary) using Form 1+ 3D printer. (b) 
Schematic using master mould to create negative silicone mould. This was then used to hold 2 mm needle 
in place for the formation of the surrounding baseplate to produce the metal MN. 
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2.4.3 Fabrication of PDMS suction housing and assembly of the metal hollow MN 

device 

A master mould was printed using the Form 1+ printer in clear resin, washed in 

isopropanol and then dried. PDMS (Sylgard 182 Silicone Elastomer, Dow Corning) was 

prepared according to the manufacturer’s instructions. This involved mixing the base 

and catalyst in a 10:1 ratio (w/w) in a 50 mL polypropylene tube and mixing 

thoroughly with a disposable glass stirrer. The tube was then placed in a vacuum oven 

and air bubbles removed by applying a vacuum force for approximately 60 mins. The 

PDMS was then poured into the master mould to minimise entrapped air pockets. 

The filled moulds were then placed in an oven overnight to cure at 100 °C. 

Subsequently, the PDMS housings were removed from the moulds and washed with 

methanol and dried. In order to create the transparent PDMS housing as shown in 

Figure 5.13, the centre surface of the 3D printed master mould was covered with a 

glass microscope slide. In order to ensure sufficient adhesion to the mould, the 

underside of the glass slide was roughened with sand paper before the application 

of cyanoacrylate glue. The glue was allowed to completely dry before addition of the 

PDMS liquid and the housing was fabricated as previously described above. 

To assemble the MN devices, the PDMS housings were affixed to photopolymer 

baseplates containing the metal MN as described in Section 2.4.2 using 

cyanoacrylate glue. Sensor backplates or blank paper squares were placed on the 

back of the baseplates before attachment of the PDMS housing. 

2.4.4 Photophysical investigation of the glucose sensor coupled with ascorbic acid 

A 50:50 ethanol and distilled water solution of 625 U/L GOx, 125 U/L HRP and 3.33 

mM TMB was prepared. Sufficient quantities of ascorbic acid (AA) was added to 

aliquots of the sensor solution to give a final concentration of either 0 µM, 20 µM or 

40 µM AA. 5 µL of aqueous glucose solution (7.5 mM or 10 mM) was added to each 

sensor solution and the absorbance at 650 nm was determined using UV-Vis 

spectroscopy at 10 s intervals for 5 mins. 
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2.4.5 Glucose sensor embedded paper backplates modified with AA  

10 mm2 paper squares were submerged in an ethanol / distilled water solution (50:50 

v/v) containing 6250 U/L GOx, 1250 U/L HRP and 3.33 mM TMB for 5 mins before 

removal and drying at 25 °C for 1 h. The paper backplates were then dipped in 

aqueous solutions of AA (0 – 10 mM) before a further drying step at 25 °C for 1 hr. 

To each backplate was then added 1 µL of either 7.5 mM or 10 mM of a glucose 

solution in PBS. Digital photographs of the backplates were then taken after 60 s 

(Figure 5.16). A further experiment was subsequently undertaken where sensor 

embedded backplates containing 5mM AA were photographed every 60 s for 5 mins 

after the addition of 1 µL of 0.0 mM – 20 mM aqueous solutions of glucose (Figure 

5.17).  

2.4.5 In vitro extraction of glucose solutions using the assembled metal hollow MN 

with AA modified glucose sensor backplate 

Metal hollow MN devices with 5 mM AA sensor backplates were assembled as 

detailed in Section 2.4.3. Two glass slides were fixed to the surface of a 90 mm petri 

plate to act as a scaffold for the MN device. The petri plates contained 30 mL of 

glucose solution in PBS ranging from 0 – 20 mM . A gap of approximately 2 mm was 

left open between the slides to allow access to the glucose solution in the plate 

(Figure 5.10). The MN device was pierced through a single layer of Parafilm and 

placed on top of the two glass slides with the extruding MN touching the glucose 

solution. The flexible PDMS housing was pressed and released using finger pressure 

in order to extract the glucose solution into the device. The devices were 

photographed at 30 s intervals for 120 s to observe the colour change on the sensor 

embedded backplates. 
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Chapter 3 

3.0 Polymeric Hydrogel Microneedles for the Extraction and Optical 

Detection of Glucose 

3.1 Introduction 

As discussed in Chapter 1, frequent glucose monitoring is a key requirement for the 

effective management of diabetes. The exchange of glucose and other biological 

analytes between the plasma present in the capillaries near the surface of the skin 

with the extracellular fluid compartment and ISF allows an opportunity to access 

these analytes without the need for blood sampling. As glucose levels found in the 

ISF correlate well with those found in the plasma, with a mean absolute difference 

of approximately 10%136,137, the measurement of glucose within the ISF provides an 

indirect measurement of the glucose present within the blood capillaries and can be 

used in the monitoring of hyperglycaemia in diabetes.  

3.1.1 ISF monitoring using microneedles 

As discussed in Section 1.11 there have been a wide range of MN based methods 

investigated to remove ISF from the skin in order to gain access to the analytes 

within. One of the most promising approaches are MNs prepared from swellable 

hydrogels composed of PMVE/MAH and PMVE/MA crosslinked with PEG138.  These 

MNs can penetrate the stratum corneum in the dry xerogel state and absorb ISF that 

can be subsequently be removed and analysed. The MNs have demonstrated the 

ability to be removed from the skin intact after application therefore leaving no 

polymer residue behind. This is an important consideration in ensuring the 

biocompatibility of the system. A further advantage of PMVE/MA based MNs is the 

decreased chance of needle stick injuries as after removal from the skin the MN 

projections are unable to re-penetrate skin due to the absorption of the fluid.  

3.1.2 Poly(methylvinylether/maleic acid)  MNs 

In an effort to increase the swelling capabilities of the hydrogel, sodium carbonate 

has been added to the formulation as a modifying agent139. The sodium carbonate 

acts by neutralising a proportion of free carboxylic acids present on the maleic acid 
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subunits of the backbone, thus providing less opportunities for the esterification 

reaction of the PEG to form crosslinks with the backbone. This decreased crosslinking 

density results in an increase in the swelling capability of the hydrogel. A balance 

must be maintained however, as when the crosslinking density is decreased 

sufficiently by the addition of a large amount of sodium carbonate, the hydrogel will 

lose its swelling capability and become soluble.  

3.1.3 Extraction and determination of glucose concentration  

Current approaches to determining the analyte concentration contained within 

PMVE/MA MNs involve post processing steps. The ISF is removed from the MN either 

by centrifugation128 or by adding the MN to water and allowing the analyte to diffuse 

out of the swollen MN and into the surrounding solution10 . The concentration of the 

analyte can then be determined using various methods such as HPLC, 

electrochemical glucometers or enzymatic assays129. These “off board” analytical 

steps have the disadvantage of requiring external equipment, trained users and 

complex steps that preclude these from being used in a POC device in their native 

form. An integrated device that permits the MN to perform in situ analysis bypasses 

these drawbacks and would allow these MNs to become point of care devices that 

patients could use without training to determine clinically relevant measurements 

related to disease. 

 

3.1.4 Colorimetric Determination of Glucose Concentration 

Visual determination of a colour change is one possible way of enabling a result to 

be determined without the need for external equipment. Such colorimetric tests for 

glucose have been widely used commercially, paired with a calibrated colour chart 

for the determination of glucose in urine140 (e.g. Clinistix®). These tests rely on the 

glucose oxidase catalysed metabolism of glucose to produce gluconic acid and 

hydrogen peroxide. The hydrogen peroxide is then used to oxidise a dye to produce 

a colour change. 3,5,3',5'-tetramethylbenzidine (TMB) is one such dye and can be 

used to detect the resultant hydrogen peroxide by forming the one electron oxidised 

blue colour charge transfer complex when catalysed by a peroxidase enzyme141. This 

blue coloured compound can then be further oxidised to the two electron oxidised 



83 
 

yellow diimine derivative (Figure 3.1). Subsequently, the amount of glucose present 

in the sample can be determined by correlating with the intensity of either the blue 

or yellow colour change.  

 

Figure 3.1 Scheme of the oxidation of TMB by hydrogen peroxide producing blue charge transfer 
complex and yellow diimine. 

 

After a single electron oxidation TMB is converted to a radical cation which forms an 

equilibrium with the blue coloured charge transfer complex. After a further 

oxidation, the charge transfer complex is converted to the yellow diimine form.   

3.2 Aim and Specific Objectives 

The main aim of the work undertaken in this chapter was to develop a hydrogel based 

MN device capable of penetrating skin and swelling with ISF containing glucose. A 

colorimetric sensor will be integrated with the MN to allow the visual determination 

of glucose concentration.  The specific objectives were: 

i. Investigate the swelling capabilities of hydrogels prepared from 

poly(methylvinylether/maleic acid) and crosslinked using poly(ethylene) 

glycol at various crosslinking densities. 

ii. Manufacture highly swellable hydrogel MN arrays from the polymers 

prepared in (i) above. 
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iii. Develop an optical detection system (hereafter referred to as sensor) for 

physiologically relevant concentrations of glucose. 

iv. Develop a suitable matrix for the sensor enabling it to be interfaced with 

the hydrogel MN to produce an integrated device. 

v. Investigate the ability of the integrated MN-sensor to determine glucose 

concentrations in solutions simulating ISF. 

3.3 Results and Discussion 

3.3.1 Swelling studies of PMVE/MA hydrogels crosslinked with PEG 

To investigate the effect of altering crosslinking density with sodium carbonate, three 

PMVE/MA hydrogels were prepared. Each formulation contained PMVE/MA (20% 

w/w), PEG (7.5% w/w) (MW 10,000 Da) and sodium carbonate at either 0%, 3% or 

5% w/w (polymers 1 2 and 3 respectively) with the remaining mass balance 

comprising distilled water.  

Following dissolution, the separate solutions were centrifuged at 1000 x g to remove 

air bubbles and cast in thin films using a 13 mm x 13 mm moulds. These films were 

left to dry at ambient temperature for 48 hours then placed in an oven at 80°C for 24 

hours. This allowed the polymer backbone to become crosslinked through ester bond 

formation between the carboxylic acid residues of the maleic acid subunits and the 

terminal hydroxyl groups on PEG as shown in Figure 3.2. After crosslinking, the 

squares of each film were submerged in phosphate buffered saline (PBS) and 

Figure 3.2 Scheme of crosslinking reaction between PMVE/MA and PEG 

Equation 3.1 Percentage swelling of polymer formulations in PBS 
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periodically removed, dried with filter paper and weighed to monitor the swelling 

characteristics. The percentage swelling was calculated using Equation 3.1: 

% Swelling =  
mt − m0

m0
 x 100 

Where mt is the mass at each time interval and m0 is the starting mass of each film. 

The results, shown in Figure 3.3, illustrate that the formulation without sodium 

carbonate reached a percentage swelling at equilibrium of 2676% w/w ± 488%.  The 

inclusion of 3% sodium carbonate significantly increased this to 7343% w/w ± 1071% 

at equilibrium (p < 0.01 at 5h). The formulation containing 5% sodium carbonate did 

not swell with PBS but rather dissolved after a few minutes.  

 

Figure 3.3 Plot showing swelling of 1cm x 1cm films of PMVE/MA based hydrogels. 5% sodium 
carbonate formulation dissolved. Error bars represent standard deviation where n = 3. ** p < 0.01 for 
polymer 2 v polymer 1 at 5 h.  

 

The differences in the swelling characteristics of the three formulations can be 

explained by changes in crosslinking densities. Polymer 1 would be expected to have 

the highest cross-link density and so imbibed the least fluid at equilibrium. The 

inclusion of 3% sodium carbonate in polymer 2 would result in a proportion of the 

free carboxylic acid groups of the maleic acid residues forming the sodium salt, 

reducing the number available to   form cross links resulting in a less stiff, less dense 
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gel.  As a result, the gel was able to swell with more fluid. In polymer 3, given the 

increased amount of Na2CO3 there were too few free acid residues remaining to form 

adequate crosslinking for swelling, instead rapidly dissolving in the aqueous medium.  

Based on these results, the formulation of polymer 2 was chosen for future studies, 

as it exhibited the highest rate of swelling and maximum swelling at equilibrium. The 

next step was to examine the feasibility of manufacturing MNs using this formulation.  

3.3.2 Manufacture of MNs prepared using polymer 2. 

Templates purchased from Micropoint® Technologies were used to create MN arrays 

from the chosen hydrogel formulation. The templates were designed to produce 10 

x 10 MN arrays with projections 350 µm in length. The MNs were manufactured by 

casting the blend of PMVE/MA, PEG and sodium carbonate into the templates 

followed by centrifugation at 800 x g for 10 mins to force the solution into the needle 

tips. The polymer in the templates was allowed to dry at ambient temperature for 48 

hours and then placed in an oven at 80°C for 24 hours. The MN arrays were removed 

from the templates after cooling to room temperature (Figure 3.4).   

 

The MNs consisted of a 10 x 10 array of square based pyramidal MN projections. Each 

projection had a height of 348 µm ± 10.2 µm and base width 160 µm when measured 

by light microscopy (Figure 3.5). The base to base interspacing was measured as 445 

µm and tip to tip distance as 590 µm.  

Figure 3.4 Digital photographs of 10 x 10 array of hydrogel MNs prepared from polymer 2 on fingertip. 
Left shows profile view and right shows view from above. 
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The MNs displayed well-formed MN projections, however, the opposite face of the 

baseplate had an uneven surface with sidewalls of hydrogel as a result of the 

moulding process. To produce MNs with an even baseplate and no sidewalls a 

“double filling” method was developed (Figure 3.6). 

 

 

 

 

 

 

  

This involved adding 60mg of polymer 2 solution to each mould and centrifuging. This 

was left to dry before a second layer of pre-gel solution was added until the solution 

had completely filled and just  flowed over the lip of each mould. After a second 

Figure 3.5 Optical microscope image of PMVE/MA hydrogel MN array. Profile view (left) and top down 
view (right).  Scale bar is 200 µm 

Figure 3.6 Schematic representation of MN "double fill" manufacture (i) Pre-gel blend added to mould, 
centrifuged and allowed to dry (ii) Second fill of pre-gel blend added to mould until slightly overflowing 
and allowed to dry (iii) MN crosslinked in oven then removed from mould (iv) Excess material trimmed 
from backplate 
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drying step, the MNs were placed in the oven at 80°C for 24 hours as before and then 

removed from the moulds. The MNs were then trimmed to remove any material that 

had been overflowed onto the lip of each mould. This resulted in MNs with a more 

even baseplate which was an important consideration when attaching the backplate 

containing the sensor.  The uniformity of mass for ten MNs using each method was 

determined (Figure 3.7). The average final mass of the single filled MNs was 18.3 mg 

± 0.68 mg whereas the double filled MNs was 60.6 mg ± 4.83 mg. The MNs made with 

the double filled method consisted of more polymer as was expected and had a 

greater variation in weight however this was deemed as an acceptable consequence 

due to the advantage of the even surface to which backplates could be attached in 

subsequent development.  

 

Figure 3.7 Scatter plot of final dried mass of MNs produced from single fill and double fill methods. 
Error bars represent standard deviations where n=10.  

 

The ability of these MN array to penetrate the skin was investigated by using Parafilm 

M® as a surrogate membrane. Parafilm has previously been used as a model 

membrane for MN skin insertion studies142,143 and closely resembles neonatal 

porcine skin with regards to penetration depth. MN arrays were inserted into five 

layers of Parafilm using firm thumb pressure and held in place for 30 s. The top layer 

of Parafilm was then removed with the attached MN remaining pierced through. The 
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Parafilm pierced MN was then examined using light microscopy to confirm that the 

MN tips had had successfully penetrated the film and remained intact (Figure 3.8).  

Figure 3.8 Optical microscope image of 350 µm MN tips pierced through a single layer of parafilm. 
Scale bar is 250 µm 

 

The mean length of each projection that was visible after penetration was 103 µm ± 

12.2 µm which was approximately 30% of the total projection length. Having 

confirmed the ability of the highly swellable MNs to penetrate through the model 

Parafilm membrane, the next step was to develop the glucose sensor that could be 

interfaced with the MN. 

3.3.3 Development of the glucose sensor. 

Colorimetric glucose sensors commonly rely on the enzymatic oxidation of glucose 

to produce gluconolactone and hydrogen peroxide (H2O2) (Figure 3.9).  
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Figure 3.9 Reaction scheme of the oxidation of glucose by Glucose Oxidase to produce Hydrogen 
Peroxide 
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The peroxide, catalysed by a peroxidase enzyme, is then used to convert a colourless 

dye to a coloured form as described in Section 3.1.3. In this way the concentration 

of glucose can be determined from the intensity of the coloured species.  

To determine the kinetics of this colour change reaction, an aliquot of glucose was 

added to a solution of glucose oxidase, horseradish peroxidase and TMB in sodium 

acetate buffer (pH 5.4) at room temperature. The absorbance spectrum of the 

solution was measured over the course of the reaction and plotted in Figure 3.10.  

 

 

Figure 3.10 Absorbance spectra obtained following oxidation of TMB (42 µM) by hydrogen peroxide 
produced from oxidation of glucose by GOx/HRP (425 U/L). Measurements taken at 60 s intervals. 

 

Initially, the absorbance at 270 nm corresponding to the colourless TMB was high, 

which decreased as the reaction progressed. The colourless TMB was converted to 

the blue coloured charge transfer complex (λMAX 650 nm) which rapidly increased 

intensity until it plateaued after 8 mins. This absorbance at 650 nm then began to 

decrease as more H2O2 was produced that further oxidised the blue complex to the 
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yellow coloured diimine. As a consequence, the decrease in absorbance intensity at 

650 nm was accompanied by the appearance of a new absorbance band centred at 

370 nm which continued to grow until the reaction was stopped at 15 min.  

Given that the goal was to use this sensing system as a method to determine 

variations in glucose concertation, it was of interest to identify the time taken for the 

absorbance readings to reach their maximum, as a practical device would require the 

colour change time to be kept at a minimum.  As the blue coloured complex was the 

dominant species in the solution, the absorbance at 650 nm was plotted separately 

as a function of time in Figure 3.11. As can be observed, using this particular ratio of 

enzymes to TMB, the formation of the blue charge transfer complex reached its peak 

after 8 min.   

 

Figure 3.11 Absorbance values of solution containing GOx/HRP (425 U/L) and TMB (42 µM) in sodium 
acetate buffer (pH = 5.4) at 650 nm showing formation of charge transfer complex over 15 mins. Error 
bars represent standard deviation where n=3 

 

To determine if the rate of blue charge transfer complex formation could be reduced, 

the concentration / ratio of enzymes and TMB were modified, with the absorbance 

at 650 nm measured over the course of 15 min.  Figure 3.12 shows the results when 
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the TMB concentration was kept constant but the concentration of the enzymes 

were doubled to 850 U/L. The results reveal that the peak charge transfer complex 

concentration is reached in a shorter period of time (3 mins) while the maximum 

absorbance intensity remained unchanged. In contrast, if the TMB concentration was 

doubled to 84 µM and the enzyme concentration kept constant, the time to reach 

peak absorbance at 650 nm was extended because the rate of oxidation was not 

increased. If both the enzyme and TMB concentrations were increased to 850 U/L 

and 84 µM respectively the peak absorbance was still reached in 8 mins, but the 

intensity of absorbance at 650 nm was increased to 0.86 indicating more charge 

transfer complex was formed. 

 

 

Figure 3.12 Absorbance at 650 nm showing formation of charge transfer complex over 15 mins using 
different ratios of GOx/HRP and TMB 

 

When increasing concentrations of glucose (0 – 1000 µM) were added to GOx/HRP 

(425 U/L) and TMB (42 µm), the plot of absorbance at 650 nm showed a linear 

relationship (R2 = 0.99) when measured at 8 mins between 0 – 200 µM (Figure 3.15), 

however this linearity broke down at higher concentrations (200 – 1000 µM) as 

shown in Figure 3.13.  
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Figure 3.13 Absorbance values of solutions containing GOx/HRP (425 U/L), TMB (42 µM) and 
increasing concentrations of glucose (0 – 1000 µM) in sodium acetate buffer (pH = 5.4) Absorbance at 
650 nm shows formation of charge transfer complex. Absorbance at 460 nm shows formation of 
diimine. 

 

This loss of linearity can be explained by the formation of the second oxidation 

product, the yellow diimine. The distinctive colour change from blue to yellow has an 

intermediate green colour which is simply an approximately equal mixture of both 

structures (Figure 3.14). 

 

Figure 3.14 Photograph of solutions of GOx/HRP (425 U/L) and TMB (42 µM) spiked with increasing 
concentrations of glucose (0 - 1000 µm) in sodium acetate buffer (pH=5.4). Photograph taken after 8 
mins 
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To effectively use the blue colour present to determine the concentration of glucose 

visually, the intensity of colour must be directly proportional to the glucose 

concentration. This means that the sensor system using this ratio of GOx/HRP to TMB 

could be used to determine glucose concentrations between 0 – 200 µM, as the 

relationship between the absorbance and the glucose concentration had acceptable 

linearity over this range. (Figure 3.15). 

Figure 3.15 Plot of linear range of absorbance at 650nm at 8 mins after addition of increasing 

concentrations of glucose to GOx/HRP (425 U/L) and TMB (42 µM) in sodium acetate buffer (pH = 5.4) 

 

To extend the linearity range and thus the range of glucose that could be detected 

visually, the formation of the yellow coloured diimine must be avoided when 

measuring higher concentrations of glucose within the given time frame. As the 

diimine is formed through the second oxidation of the blue charge transfer complex, 

reducing the rate of oxidation can reduce its likelihood to form. One way to decrease 

the rate of oxidation was to decrease the concentration of the GOx/HRP but keep the 

concentration of TMB constant. Adopting this approach, Figure 3.16 shows that the 

R2 = 0.99 
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linear region can be extended across the entire 0 – 1000 µM range by decreasing the 

concentrations of GOx/HRP from 425 U/L to 106 U/L. 

Figure 3.16 Absorbance of solutions containing 425 U/L, 212 U/L and 106 U/L of GOx/HRP and TMB 
(42 µM) 8 mins after addition of increasing concentrations of glucose in sodium acetate buffer 
(pH=5.4) 

 

This decreased the formation of the diimine within the 8 mins despite the higher 

concentrations of glucose.  From these experiments it was concluded that the ratio 

of the enzymes GOx/HRP to the concentration of TMB could be varied to control 

range of glucose concentration that could be determined by monitoring the 

formation of the blue coloured charge transfer complex. By finding the correct ratio 

of GOx/HRP to TMB the intensity of the blue colour formed at a given time point 

could be used to determine glucose concentration within the physiological range (0 

- 10 mM). However, the kinetics of this reaction would vary depending on the 

substrate in which it occurred. As it was carried out in an aqueous buffer at pH 5.4 it 

was deemed not essential to find the correct ratio of GOx/HRP to TMB to show a 

linear colour change within the physiological glucose concentration at this point as 

this would change when the reaction was carried out in a different substrate such as 
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a hydrogel or solid matrix, which would be necessary to interface with the hydrogel 

MN. 

3.3.4 Interfacing sensor with hydrogel MN  

The matrix chosen to house the sensor system was required to have excellent water 

transfer abilities, be compatible with pH sensitive and thermolabile enzymes and 

have the ability to be integrated with the hydrogel MNs. The PMVE/MA hydrogel was 

initially considered as a candidate to create a hydrogel backplate that could be 

attached to the opposite face of the baseplate from the MN projections as it had 

been demonstrated to be highly swellable. While the enzymatic glucose sensor did 

remain active when added to the pre-gel blend of PMVE/MA and PEG, as 

demonstrated by the addition of 10 mM glucose solution (Figure 3.17), the act of 

heating the polymer after drying to induce chemical crosslinking rendered the 

enzymes inactive.  

 

The addition of the enzymatic sensor to the hydrogel after crosslinking was possible 

by submerging a crosslinked xerogel in a solution containing the sensor and allowing 

the hydrogel to imbibe the fluid. After it had become fully swollen, surface water was 

removed with filter paper and a 10mM glucose solution was pipetted on to the gel. 

A colour change was observed with the yellow diimine being visible (Figure 3.18). 

Figure 3.17 Digital photographs of pre-gel blends containing GOx/HRP and TMB (a) before addition of 
glucose (b) 4 mins  after addition of 10mM glucose (c) 8 mins after addition of 10 mM glucose 

(a) (b) (c) 
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Figure 3.18 Digital photographs of addition of GOx/HRP and TMB to crosslinked hydrogels to produce 
colour change after glucose. (a) Crosslinked PMVE/MA based hydrogel in dried state (b) swelling 
hydrogel in aqueous solution containing GOx/HRP and TMB (c) swollen hydrogel 5 mins after addition 
of 10 mM glucose 

 

In order to prepare a backplate from the sensor swollen xerogel, it was allowed to 

dry at ambient temperature under a constant air flow to aid evaporation for 4 hours.  

The resultant film was then cut to size and attached to the back on a hydrogel MN 

with a small amount of distilled water to aid adhesion (1 µL). The MN-sensor 

backplate assembly was then pierced through a layer of Parafilm and placed on top 

of a 10 mM glucose solution (Figure 3.19). This in vitro experimental set up was used 

as a simple method to determine if the MN tips could swell with sufficient solution 

to transfer the glucose into the backplate and interact with the sensor to produce a 

colour change.  

 

Figure 3.19 Schematic diagram of in vitro experimental set up to investigate the ability of PMVE/MA 
MN with hydrogel backplate containing glucose sensor to extract solution from reservoir containing 
10 mM glucose 

(a) (b) (c) 
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Figure 3.20 shows the results of this study with a blue/green colour change observed 

in the backplate after 60 min, which indicated that the enzymes remained active 

following incorporation within the dried polymer film. In Figure 3.20, the backplate 

was covering only a portion of the MN baseplate and the colour was only observed 

in that region. 

 

 

While using this method to form a backplate did show some encouraging results, 

there was a number of issues in using PMVE/MA crosslinked with PEG. The need to 

swell the polymer with the sensor and then allow it to dry meant it was difficult to 

control the shape and texture of the resultant film. A simpler method would involve 

the incorporation of the glucose sensor into the polymer before casting it into a 

mould and drying to allow the production of films with predetermined dimensions. 

This would require a polymer film that could be created without the need for 

elevated temperatures and with a pH of between 4 and 7. One such polymer film 

consists of PMVE/MA and TPME. This film was produced by adding TPME to a 

solution of PMVE/MA and adjusting the pH to 5.4 using NaOH. To this solution was 

added GOx/HRP and TMB which was then cast into the MN moulds to match the 

exact dimensions of the hydrogel MNs. Importantly, the moulds were not centrifuged 

after addition of the solution in order to produce polymer film squares that did not 

have MN projections. These backplates were allowed to dry under constant air flow 

Backplate 

Figure 3.20 Digital photograph of PMVE/MA MN with hydrogel backplate containing GOx/HRP and 
TMB pierced through Parafilm and placed on top of aqueous solution containing 10mM glucose (a) 
line showing partial coverage of baseplate with hydrogel backplate (b) after swelling with aqueous 
solution containing 10 mM glucose and production of blue/green colour change 

(a) (b) 
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and attached to the MN baseplate as before.  When tested in vitro as in Figure 3.19, 

a green colour was observed once more, but it still required approximately 50 mins 

(Figure 3.21).  

The addition of TPME to the PMVE/MA has been used previously as a plasticiser to 

increase the flexibility of the film rather than a crosslinker144. Indeed, the structure 

of TPME (Figure 3.22) shows the presence of only one free hydroxyl (-OH) group.  
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Figure 3.22 Structure of TPME used as a plasticiser in the PMVE/MA film 

 

As a result, no covalent crosslinks could be formed between the separate PMVE/MA 

backbones, unlike with PEG. This resulted in a flexible film which remained water 

soluble and thus absorbs less fluid before dissolving.  

Figure 3.21 Digital photograph of PMVE/MA MN with PMVE/MA and TPME based backplate covering entire 
baseplate area (a) before swelling (b) after swelling for 50 mins 

(a) (b) 
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3.3.5 Optimisation of hydrogel MN with backplate in vitro 

While the integration of the sensor and MN successfully generated a colour change 

in response to glucose after 50 mins, for a point of care device it is preferable for the 

results to be available extremely rapidly, for example after 60 seconds. To achieve 

this goal, the following two limitations of the device were identified:  

(i) The rate at which the backplate absorbed the solution and produced a 

colour change. 

(ii) The rate at which the MN imbibed the solution. 

Both of these limitations were investigated in turn for further optimisation. 

3.3.5.1 Improving the rate at which the backplate absorbed the solution and produced 

a colour change.  

It was observed that the hydrogel polymer backplates did provide a substantial delay 

in the time between the MN swelling and the colour change occurring, therefore 

other platforms to house the glucose sensor rather than hydrogel based backplates 

were investigated. Paper was identified as an ideal candidate due to its low cost, 

excellent water transporting capabilities and widespread use in colour based 

sensors145. The initial white colour of the paper provided an excellent contrast for 

colour intensity to be determined by the naked eye and aqueous solutions are quickly 

drawn into dried paper networks through capillary action between the 

interconnected strands of paper fibres146.  

To create sensor embedded paper backplates, paper squares (Whatman No. 1 filter 

paper) measuring 1cm2 were submerged in solutions of GOx/HRP and TMB (50:50 

distilled water: ethanol) for 5 mins. The backplates were then removed and allowed 

to air dry at room temperature for 60 mins. An experiment was conducted to 

determine the ideal concentrations of GOx/HRP and TMB to be used. The goal was 

to achieve a rapid colour change that was easily visible to the naked eye within 30 s 

to shorten the time to response. Four formulations were investigated as seen in 

Table 3.1. To observe the response of each backplate, an aliquot (5 µL) of a 10 mM 

glucose solution was added and photographs of each backplate at defined time 
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points were taken. The experiment was repeated and both sets of photographs at 0s, 

30s and 60 s from are shown in Figure 3.23. 

Table 3.1 Four formulations used to produce glucose responsive paper backplates 

Formulation GOx (U/L) HRP (U/L) TMB (mM) 

A 8.5 1.7 3.33 

B 85 17 3.33 

C 850 170 3.33 

D 8500 1700 3.33 

 

Figure 3.23 Digital photographs of colour change in paper backplates produced using formulations A 
– D over time following addition of a 5 µL aliquot of 10 mM glucose. Results shown from two repeats 
(left and right). 

 

Both formulations A and B generated little to no visible colour change within 60 s. An 

easily visible colour change was visible with formulation C after 30 s and this 

increased in intensity at 60 s. Formulation D caused a rapid colour change, however, 

the colour was less uniform and less easily visible. As each formulation had the same 

concentration of TMB the differences observed must have been due to the enzyme 

Repeat 2 Repeat 1 
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concentration. Formulations A and B had a low concentration of GOx and HRP and, 

therefore, relatively little TMB was oxidised within 60 s. It was observed that at later 

time points, e.g. 8 mins (Figure 3.24) a colour change did occur with both 

formulations, with B providing a more intense change. 

 

Figure 3.24 Digital photographs of paper backplates made from formulation A and B 8 mins after 
addition of glucose showing colour change 

 

Formulation C showed the most promising results as a visible colour change was 

produced at 30 s that was reasonably uniform and covered the entire backplate. The 

non-uniformity of the colour change in D may be explained by the extremely high 

concentration of GOx and HRP forming a suspension in the solution used to make the 

backplates, resulting in uneven deposition of the enzymes across the backplate. C 

was chosen as the lead formulation to pair with the 350 µm hydrogel MN to retest in 

vitro and determine any improvement in performance. 

Paper backplates prepared using formulation C were attached to the back of 

hydrogel MNs and the time taken for a colour change to occur using the previous in 

vitro method was measured. A decrease from the previous time (50 mins) using the 

hydrogel backplate was observed with the initial wetting of the backplate appearing 

after a mean time of 28.5 mins ± 3.9 mins from placing the MNs in contact with the 

10 mM glucose solution through Parafilm. The fluid was observed to contact the 

paper backplate from a single point and quickly became dispersed throughout the 

entire backplate due to capillary action inherent to the material (Figure 3.25). The 

blue colour change began to occur as the TMB was oxidised within 60 s from the 

initial wetting. From these results, paper was identified as a suitable platform to 

house the glucose sensor for subsequent studies as it produced a colour change 
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within a much shorter period of time compared to previous hydrogel backplates and 

due to the facile nature of producing a large quantity of backplates with relatively 

low cost. 

 

Figure 3.25 Digital photographs of paper backplates attached to 350 µm MN pierced through parafilm 
and placed on 10 mM glucose solutions (a) initial wetting of backplate (b) 20 s after wetting (c) 40s 
after wetting (d) 60s after wetting 

 

3.3.5.2 Improving the rate at which the MN imbibed the solution. 

Following the identification of a MN sensor backplate with rapid colour change 

kinetics, attention was turned to improving the extraction capabilities of the hydrogel 

MN. Some initial optimisation was achieved by using sodium carbonate as a 

crosslinking density modifier, thus increasing the rate of swelling. However, 

additional steps were required to shorten the time to response further. Considering 

the dimensions of the MN, the length of the MN projections were thought to be a 

significant factor in the rate at which fluid would be imbibed into the MN baseplate 

and subsequently the backplate. Previously, it was be determined that an average of 

103 µm of each MN projection penetrated through the parafilm membrane and, 

therefore, only this portion would be in contact with the aqueous solution. By 

increasing the length of the MN projections, a greater amount of the swellable 

hydrogel would be exposed to the solution and the rate of uptake may be increased. 

When applied to an in vivo system i.e. human skin, the MN projections would 

penetrate further into the viable epidermis and upper layers of the dermis and so 

contact more ISF.  
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To this end, moulds to produce MN arrays of increased length were purchased. The 

mould specifications listed a length of 800 µm. These MNs were produced in the 

same manner as the shorter MNs using polymer 2 (Figure 3.26).  

 

Light microscopy was used to confirm good replication from the moulds with a mean 

needle length of 803 µm ± 15.6 µm and mean base width of 335 µm. (Figure 3.27). 

Base to base interspacing of 288 µm and tip to tip distance of 588 µm. 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Light microscope image of PMVE/MA hydrogel MN with 800 µm length MNs. Scale bar is 
200 µm 

 

The MN arrays were also pierced through Parafilm and photographed as before 

(Figure 3.28). It was confirmed that the projections did penetrate while remaining 

intact. When comparing the length of each projection exposed after piercing through 

(a) (b) 

Figure 3.26 Photographs of Polymer 2 PMVE/MA hydrogel MNs (a) 350 µm MN length   (b) 800 µm 
MN length 
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a single layer of Parafilm, a significant increase was observed for the longer MN with 

a mean of 235 µm ± 37.6 µm  compared to the shorter MNs that had a mean length 

of 103 µm ± 12.2 µm.  

 

 

Figure 3.28 Light microscope image of 800 µm MN tips penetrating through a single layer of parafilm. 
Scale bar is 200 µm 

 

To evaluate if increasing the length of the MN projection increased the rate of 

glucose extraction, glucose sensor embedded paper backplates were attached to the 

MN baseplate as before, pierced through a single layer of parafilm and placed on the 

surface of a 10 mM glucose solution. Initial wetting of the paper backplate occurred 

after 21.2 mins ± 3.6 mins following addition of the MN and the colour change 

occurred within the next 60 s as observed in the shorter MNs (Figure 3.29). 

 

Figure 3.29 Digital photographs of paper backplates attached to 350 µm MN pierced through parafilm 
and placed on 10 mM glucose solutions (a) initial wetting of backplate (b) 20 s after wetting (c) 40s 
after wetting (d) 60s after wetting 
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These results highlight that increasing the length of the MN projections from 350 µm 

to 800 µm reduces the time taken for the MN to extract the aqueous solution by 7 

mins from 28.5 mins ± 3.9 mins to 21.2 mins ± 3.6 mins. Figure 3.30 illustrates how 

the changes in the MN and backplate described in this chapter decreases the time 

taken to produce a colour change in the sensor backplate.  

 

Figure 3.30: Time for colour change to occur in glucose extraction in 350 µm length MNs arrays with 
TPME backplate, paper backplate and 800 µm length MNs with paper backplate. 

 

There have been a number of MNs with PMVE/MA used as the main copolymer with 

crosslinking polymers other than PEG. For example, hyaluronic acid (HA), a 

glycosaminoglycan, has been covalently crosslinked with PMVE/MA to form hydrogel 

MNs147. The polymer films demonstrated sustained release of methylene blue (MB) 

used as a model compound over 50 h. The polymer films also exhibited the ability to 

rapidly swell with aqueous solutions similar to the PMVE/MA and PEG hydrogels 

discussed in this chapter. In fact, the rate of swelling was greater in the HA containing 

polymer films as they reached their maximum equilibrium in 15 mins however the 

overall swelling capacity was substantially lower (1400% w/w) than the PEG 

containing polymer in this work.  

Pectin has also been used as a crosslinker in PMVE/MA based hydrogel MNs148. While 

the crosslinking mechanism was reportedly due to esterification between the free 

acid residues of the PMVE/MA and free hydroxyl groups present on the pectin 

macromolecules, the swelling rates of the polymer films were substantially slower 

then PEG crosslinked films. The swelling studies were conducted over 7 days with the 

maximum swelling percentage observed to be 4951% w/w.  While this is comparable 
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to the swelling percentage at equilibrium of the PEG crosslinked films, it is 

substantially slower in swelling rate.  

3.4 Conclusion 

In this chapter, highly swellable MN arrays composed of PMVE/MA, PEG and sodium 

carbonate were produced using a micromoulding technique. MN arrays with both 

350 µm and 800 µm projections in 10 x 10 arrays were successfully produced and 

were sufficiently robust to remain intact following penetration through a Parafilm 

membrane.  

An optical detection system for glucose was developed composed of GOx/HRP and 

TMB. The sensor utilised the production of hydrogen peroxide from the oxidation of 

glucose to produce a visible colour change. The oxidation of the TMB by the hydrogen 

peroxide was catalysed by HRP to form a blue coloured charge transfer complex. 

Upon further oxidation, the yellow coloured diimine species was observed. The 

sensor was interfaced with the MN, initially using a hydrogel backplate platform. 

These MNs were tested in vitro and successfully indicated the presence of glucose in 

simulated ISF within 50 mins, via a blue colour change that was visible to the naked 

eye.  

Multiple optimisation steps were undertaken in order to improve the overall time 

required for observation of the colour change following addition of the MN to a 

glucose solution. By optimising the ratio of sensor components (i.e. enzymes and dye 

etc.) and utilisation of a paper based substrate to house the sensor as a MN 

backplate,  the overall response time  was almost halved from 50 min to 28.5 mins ± 

3.9 mins. By increasing the length the MN projections from 350 µm to 800 µm, the 

time was further decreased to 21.2 mins ± 3.6 mins.  

While substantial improvement in the response time was achieved by these 

optimisation steps, for practical use as a POC device the response time must be 

extremely rapid. The major limitation observed was the time necessary for the 

PMVE/MA hydrogel MN to extract the aqueous solution and bring it into contact with 

the backplate. 
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In the following chapter, the use of a hollow MN was investigated to determine if the 

extraction kinetics could be improved when compared to the hydrogel MNs.  
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Chapter 4 

4.0 Single Hollow Microneedle Device for the Extraction and 

Colorimetric Detection of Glucose 

4.1 Introduction 

As identified in Chapter 3, one of the major challenges of designing POC MN device 

for glucose is the time taken for the hydrogel MN to imbibe fluid and transport it to 

the detection system. For a POC device, the measurement must be obtained within 

a reasonable time frame so the result accurately reflects the current analyte levels in 

the body. Glucose concentrations in the plasma and, therefore, the ISF can rapidly 

increase or decrease according to the insulin-glucagon cycle while the measurement 

from the MN is being obtained. Therefore, it is imperative that the measurement is 

obtained as quickly as possible after the test commences to ensure an intervention 

can be made if necessary. In this chapter, hollow MNs as an alternative to PMVE/MA 

hydrogel based MNs were investigated to determine their ability to rapidly transport 

simulated ISF to the detection system. 

Hollow MNs can made from monocrystalline silicon using MEMS technology. In one 

example, hollow silicon MNs that have successfully demonstrated the withdrawal of 

ISF from the skin in 15 – 20 mins using capillary action have been prepared125. These 

were manufactured by initially spinning a pattern of photoresist (SU-8) onto a silicon 

wafer leaving an array of circular areas of the silicon exposed. Then, using Deep 

Reactive Ion Etching (DRIE), channels that would become the lumen of the hollow 

MNs were etched into the wafer in the exposed silicon crystal. The MN projections 

were cut into columns by a micro-controlled diamond saw blade before sharpening 

of the columns into MN projections using an isotropic etching technique with a 

mixture of hydrofluoric, nitric and acetic acid. This produced 2D arrays of hollow MNs 

composed of silicon that were inserted into the skin of human subjects. The arrays 

were capable of extracting ISF, which was confirmed through optical microscopy and 

analysis of glucose in the fluid extracted.  
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Another method to prepare hollow MNs is through the use of metal 

electrodeposition149,150. Solid SU-8 MNs were prepared using photolithography with 

a dark exposure mask in the pattern of the 2D array of needles and UV light. The MNs 

were then fully coated with a conductive layer of poly (methyl methacrylate) and 

carbon black. In order to create open hollow MNs the arrays were exposed to O2/CF4 

plasma which eroded the conductive polymer away from the MN tips and exposed 

the SU-8 beneath. The arrays were then electroplated with nickel for structural 

strength and then gold for biocompatibility. This was achieved by submerging the 

conductive MN arrays in an electroplating bath and applying a voltage between the 

arrays and a metal electrode, which were composed of either nickel or gold. After 

the electroplating steps, the metal layers were separated from the other layers to 

create the hollow metal MN arrays.  

Both of these methods were successful in producing hollow MNs but require the use 

of highly specialised and costly materials and equipment. Silicone micromoulding 

may provide a more convenient and less costly method to create hollow MNs. 

However, the challenge of creating a master template from which to create the 

silicone mould must be addressed. In this chapter, the use of a hypodermic needle 

as a template in combination with 3D printing technology is investigated in order to 

develop a single hollow MN device.  

Additionally, a method to quantify the colorimetric response of the detection system 

was investigated in this chapter and involved recording digital photographs of the 

backplate followed by subsequent analysis using image processing software, ImageJ. 

This method compliments the use of naked eye detection as used in Chapter 3.  

4.2 Aim and Specific Objectives  

The aim of the work undertaken in this chapter was to prepare a hollow MN from 

polymerised glycidyl methacrylate (GMA) crosslinked with triethyleneglycol 

dimethacrylate (TEGDMA) and trimethylolpropane trimethacrylate (TRIM), hereafter 

referred to as 1. Subsequently, the MN was integrated with a paper-based 

colorimetric based GOx/HP and TMB glucose sensor and the kinetics of simulated ISF 
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withdrawal using this device was investigated. The ability of the device to accurately 

discriminate between various different glucose concentrations was also determined.  

The specific objectives were:  

i. Manufacture a hollow MN device composed of 1 that could transport 

simulated ISF containing glucose to the backplate 

ii. Determination of the kinetics of fluid withdrawal using the MN. 

iii. Mechanical analysis of the robustness of the MN structure. 

iv. Development of a method to quantify of the intensity of the blue colour 

change of the paper based sensor through digital image analysis using 

chromaticity.  

v. Optimisation of the sensor to produce a linear response to glucose in 

simulated ISF extracted by the hollow MN  

 

4.3 Results and Discussion 

4.3.1 Manufacture of a hollow MN device for the extraction of simulated ISF  

In order to produce a hollow MN, a Formlabs 1+ 3D printer was utilised to create the 

array. Initially, solid MN arrays were printed to investigate the ability of the printer 

to produce structures under one millimetre in length. Using computer aided drawing 

(CAD) software (SketchUp and Autodesk Nettfab) schematics of several solid MN 

arrays of various sizes were drawn and printed (Figure 4.1).  

 

                                Array 1     Array 2 

Figure 4.1 CAD images of solid MN arrays (Array 1) 1mm height, 1 mm base width, 1 mm interspacing 
and (Array 2) 1 mm height, 0.5mm base width, 0.5 mm interspacing 
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The printed arrays were examined using light microscopy to determine the 

dimensions of the projections and to evaluate the sharpness of MN tips (Figure 4.2). 

The projections of Array 1 had a mean height of 772.7 µm ± 90.9 µm and the 

projections on Array 2 had a mean height of 605.3 µm ± 42.9µm (n = 10). Both of the 

printed arrays showed a substantial difference in height from the original CAD 

schematics. Additionally, the tips of the projections were observed to be rounded or 

flattened. 

 

Figure 4.2 Optical microscope image of solid MN arrays projections produced using Formlabs 1+ 3D 
printer. Scale bars are 200 µm  

 

Direct printing of a hollow MN would require extremely high resolution to produce 

the sharp tip and the hollow lumen of the MN successfully. Therefore, following 

examination of this data from printing solid MNs it was concluded that it would not 

be feasible to produce hollow MNs using the FormLabs 1+ 3D printer due to its 

insufficient resolution.  

To overcome this challenge, instead of directly printing a hollow MN, a hypodermic 

needle was used as a moulding template. To produce a MN under 1000 µm in length, 

only the tip of the hypodermic needle was used as the template. To enable the 

replication of a set length of the needle, a housing for the needle was manufactured 

using the 3D printer as shown in Figure 4.3.  
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Figure 4.3 (Left) CAD schematic of housing to fix hypodermic needle. (Right) Housing to fix hypodermic 
needle printed using clear resin from Formlabs 1+ 3D printer 

 

As the needle was inserted into the housing, the length of the exposed tip was 

controlled with a removable lid. The dimensions of the lid were designed in such a 

way that the length of the needle exposed after insertion was 400 µm (Figure 4.4).  

 

Figure 4.4 Schematic of housing with hypodermic needle inserted with attached lid. The length of the 
needle exposed is controlled by the gap between the housing and the lid (400 µm). 

 

The templates were prepared as described in Section 2.3.1. The choice of polymers 

used to make the MNs was adapted from Lui et al.151 and consisted of polymerised 

GMA crosslinked with TEGDMA and TRIM (1). Lui et al. investigated the use of these 

methacrylate based polymers in conjunction with a PEG porogen in order to make a 

porous MN that had interconnected pores capable of fluid extraction using capillary 
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action. However, in this work, the porogen was excluded in order to form a solid 

robust structure that was not porous, opting instead for a single hollow lumen 

through the MN projection. 

Each MN was produced from the silicone templates as described in Section 2.3.2. 

Briefly, each mould was filled with 150 µL of 1 and a catalytic quantity of Irgacure 184 

as a photoinitator before irradiation with UV light to enable polymerisation (Figure 

4.5).  

 

Figure 4.5 Schematic of hollow MN production. Silicone mould is filled with 150 µL of photopolymer 
mix before irradiation with UV light. Hollow polymer MN is then removed from mould. 

 

To confirm each MN had remained hollow, a wire was threaded through the opening 

at the tip off each MN and through the baseplate. The MN projection was imaged 

using an optical stereomicroscope. This microscopy technique produced a 

stereoscopic view of the sample due to its binocular arrangement of lenses. It 

enabled the MN tip to be visualised without the need for more costly and less 

convenient electron microscopy. As seen in Figure 4.6, the MN produced had a sharp 

bevelled tip 400 µm in height, with the opening of the hollow bore clearly visible.  

 

365nm 
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Figure 4.6 Photographs of polymerised hollow microneedle devices. (a) Polymer microneedle with 
metal wire through hollow bore. (b) Micrograph image of hollow microneedle tip. 

 

4.3.2 Kinetics of fluid removal using the hollow MN device. 

To confirm the capability of the hollow MN to withdraw fluid rapidly, a blank paper 

backplate was fixed to the upper side of the MN baseplate. The needle end of the 

device was then pierced through a Parafilm membrane and the assembly placed onto 

a solution containing MB dye (1 mM).  The rate of MB uptake was followed visually 

over the course of 5 s. As observed in Figure 4.7, the first appearance of the dye 

occurred within 2 s and the backplate was completely saturated within 5 s. 

Figure 4.7 Digital photograph of single hollow MN device extracting MB solution (1 mM) into a blank 
paper backplate via capillary action over 5 s. 

 

Notably, it was also observed that the blue solution moved up through the hollow 

bore and into the centre of the paper backplate from where it then migrated toward 

the outer edges. This confirmed that the fluid was only transported though the 

hollow bore of the needle and not through the baseplate itself. Such a timescale is 

compatible with use in a POC device. 
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4.3.3 Mechanical testing of the hollow MN device 

To reliably penetrate the skin, the MN must be adequately robust to withstand the 

force necessary to penetrate without fracture. The mean axial force required to 

fracture the MN was measured to be 0.27 N ± 0.04 N (n = 4) by driving a steel rod 

onto the MN tip using an axial load test station (Figure 4.8). Previous reports have 

shown forces ranging between 0.028 N – 0.030 N per MN to be sufficient to penetrate 

the skin152. These values are approximately one order of magnitude lower than the 

mean fracture force of the hollow MN device. Therefore, the hollow MN should be 

sufficiently robust to withstand insertion into human skin. 

Figure 4.8 Representative graph of force against displacement of axial load fracture test of hollow MN. 
Mean force to fracture = 0.27 N ± 0.04 N (n = 4) 

 

4.3.4 Development of a method to quantify of the intensity of the blue colour change 

of the paper based sensor 

In order to more accurately develop the colorimetric sensor for glucose, a method to 

quantify the intensity of the colour change generated by the sensor was necessary. 

In Chapter 3, UV/Vis spectroscopy was used to quantify the concentration of the blue 

charge transfer complex in solution at 650 nm. However, this analytical method is 

more difficult when the sensor is incorporated into a solid matrix such as paper and 

requires the use of solid-sate probes in combination with a UV-Vis spectrometer. A 
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more convenient method to monitor the colour change in a paper matrix was to 

record photographs with a high resolution digital camera. Subsequently, the colour 

data could be extracted from the digital image using image processing software. 

Colours in digital images and screens can be represented using the trichromatic RGB 

model. The model is so named due to the three primary channels from which all other 

colours are derived: red, green and blue. The intensity of each of the channels range 

from 0 – 255 with 0 being the lowest to 255 being the highest intensity. Table 4.1 

shows how varying the intensity of each channel can change the final colour 

displayed. As the RGB model is additive, white is produced when all three channel 

are at maximum intensity (255, 255, 255) and black is produced when all channels 

are set to lowest intensity (0, 0, 0). 

Table 4.1 Actual colour represented by Intensity of each colour channel ranging from 0 – 255 in 
trichromatic RGB model 

R G B   Colour 

255 0 0  

0 255 0  

0 0 255  

255 255 255  

0 0 0  

 

To quantify the intensity of a colour, the corresponding channel value can be 

monitored, however, the single value alone may not be directly proportional to the 

intensity observed. This is due to the luminance of the object in the image. To 

illustrate this concept, two photographs of a blue coloured paper were recorded, one 

in bright conditions and one in darker conditions (i.e. one image has high luminance 

and one has low luminance). Using image processing software, the value of the blue 

channel in the bright image (170) was determined to be greater than in the darker 

image (150), despite the colour of the object remaining unchanged (Figure 4.9).  
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Figure 4.9 Digital photographs of blue coloured paper in dark conditions and light conditions  

 

Therefore, it is unsuitable to use only a single colour channel intensity as a measure 

of colour intensity without taking into account the luminance. One approach to 

overcome this is to measure the chromaticity of the colour which can be calculated 

as described in Equation 4.1: 

𝐶ℎ𝑟𝑜𝑚𝐵 =  
𝐵

𝑅 + 𝐺 + 𝐵
 

Where ChromB is the blue chromaticity, and R, G and B are the Red, Green and Blue 

channel values respectively.  

The sum of the R, G and B channels represents the total luminance of the image 

which can be used to obtain the intensity of a colour independent of the total 

luminance.  Taking the images from Figure 4.10 and comparing the ChromB value and 

the blue channel value it was found that the ChromB was a more accurate method of 

determining the intensity of the blue colour in both images as the ChromB values are 

much less affected by the luminance of the object (Table 4.2). 

Table 4.2 Comparison of methods to obtain blue colour intensity from two images of the same object 
in different light conditions. Error represents % Standard Deviation and n = 4  

Measurement Method Dark Lighting Bright Lighting 

Blue Channel Value 150.6 ± 2.10% 170.4 ± 0.71% 

ChromB 0.356 ± 0.25% 0.345 ± 0.15% 

  

Darker Conditions Brighter Conditions 

Equation 4.1 
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To validate the use of chromaticity in quantifying the blue colour intensity of  paper 

backplates, an experiment was carried out in which paper squares (1 cm2) were 

submerged in increasing concentrations of MB dye (0 – 1 mM) and allowed to air dry. 

Digital photographs of each square were taken and the ChromB values were 

calculated using ImageJ software. To control for any background interference, the 

ChromB values of paper squares that had been submerged in distilled water were 

subtracted from the readings. Figure 4.10 shows the linear relationship obtained 

between the ChromB and the MB concentrations (R2 = 0.95). From this experiment it 

was concluded that the ChromB could be used to quantify the intensity of the blue 

colour of a paper based sensor in response to glucose.  

 

Figure 4.10 Linear relationship between ChromB and MB concentration of paper squares after dye 
absorption and drying. Photographs of paper squares are shown to right of graph. Error bars represent 
standard deviation where n = 3 

 

4.3.5 Optimising the sensing system to produce a linear response to glucose in 

simulated ISF. 

In Chapter 3, the paper based glucose sensor was optimised to provide a rapid colour 

change in response to 10 mM glucose. In this section, the goal was to further optimise 

the sensor by establishing a linear colorimetric response to glucose concentrations 

between 0 – 10 mM in simulated ISF.  Using the previous ratio of enzymes to TMB 
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(850 U/L GOx, 170 U/L HRP, 3.33mM TMB), paper backplates were prepared and the 

colorimetric response to glucose concentrations within a 0 – 10 mM range were 

tested (Figure 4.11). The ChromB values of the backplates was used quantify the 

intensity of the colour change after 15 s. 

 

Figure 4.11 Plot of ChromB of glucose sensor embedded paper backplate 15s after direct addition of 
glucose solutions of increasing concentration. Error represents standard deviation where n = 3. 

 

The results from this experiment indicated that while there was a linear relationship 

between the glucose concentration and ChromB between 0 mM – 7.5 mM, at the 

higher concentrations of glucose (from 7.5 mM – 10 mM), a non-linear relationship 

existed due to the further oxidation of the blue charge transfer complex to form the 

yellow coloured diimine, as demonstrated previously in the UV/Vis studies in Section 

3.3.3. Therefore, in order to extend the linear response across a greater range of 

glucose concentrations, the concentration of the enzymes were decreased while the 

concentration of TMB was kept constant. Backplates were once again prepared but 

the concentration of GOx and HRP were decreased to 625 U/L and 125 U/L 

respectively. Several different concentrations of glucose (0 mM, 2.5 mM, 5.0 mM, 7.5 

mM and 10 mM) were added to the backplates and digital photographs of each 
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recorded at 1 s intervals for a total of 15 s and the ChromB values were calculated 

(Figure 4.12).    

The backplates rapidly began to change colour from white to blue as evidenced by 

the increase in the ChromB values, with the greater concentrations of glucose causing 

more intense colour change over the course of the 15 s, while the control backplate 

with the addition of blank PBS remained colourless. When the ChromB values at 15 s 

were plotted separately (Figure 4.13), a linear response was observed over the entire 

0 - 10 mM range. (R2 = 0.95). From the results of this experiment, backplates prepared 

using this concentration of enzyme and TMB were chosen to be paired with the 

hollow MN device to test the response to glucose after extraction using a similar in 

vitro experimental set up as in Section 3.3.4. 

Figure 4.12 Plot of ChromB against time for glucose responsive backplates following addition of 
increasing glucose concentrations. 10mM (Circle) 7.5mM (Square) 5mM (Triangle) 2.5mM (Inverted 
triangle) 0mM (Diamond). n = 3. Error bars are standard deviation. 
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Figure 4.13 Linear relationship between ChromB and glucose concentration after direction addition of 
5 µL of glucose between 0 – 10 mM in PBS.  

 

4.3.6 In vitro extraction of simulated ISF using MN device integrated with sensor 

backplate. 

Having demonstrated the ability of the hollow MN to transport fluid rapidly to a 

paper back plate, and having developed a suitable sensing system with a linear colour 

change over the 0 - 10 mM range, the next step was to incorporate both together 

and test the ability of the resulting device to measure glucose concentrations in 

simulated ISF. Briefly, a paper backplate embedded with the sensor was fixed to the 

upper side of the baseplate. The MN-backplate assembly was then pierced through 

a single layer of Parafilm and placed on top of PBS solutions spiked with varying 

concentrations of glucose between 0 – 10 mM as a surrogate for ISF (Figure 4.14). 

Photographs of each backplate were taken after 15 s and 30 s and the intensity of 

the colour change was analysed as before using ChromB measurements (Figure 4.15). 

R2 = 0.95 
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Figure 4.14 Schematic of the experimental set up of a glucose sensor embedded backplate attached 
to the single hollow MN device. The device was pierced through Parafilm to simulate the skin and 
place on top of PBS spiked with physiologically relevant concentrations of glucose (0 – 10 mM) as a 
surrogate for ISF 
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As was the case for the MB study, the MN-backplate assembly again rapidly withdrew 

the glucose solution as evidenced by a dampening of the paper backplate. In 

addition, the intensity of the blue colour generated 30 s following immersion was 

dependent on the concentration of glucose with excellent linearity (R2 = 0.99) 

observed over the 0 – 10 mM range. The relationship between the glucose 

concentration and the ChromB showed superior linearity after 30 s than at 15 s. This 

change may be due to the change in the volume of the glucose solution that is 

absorbed into the backplate in the in vitro setup where it is controlled by the capillary 

action through the lumen of the MN compared to the experiment in Section 4.3.4 

               0mM  2.5mM      5mM          7.5mM        10mM 

R2 = 0.99 

Figure 4.15 Digital photographs of sensor embedded backplates after 30 s showing blue colour change 
in increasing concentrations of glucose spiked PBS (above). Linear plot of ChromB against glucose 
concentration. Error bars represent standard deviation where n= 3 
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wherein a 5 µL aliquot of each glucose solution was added directly to the backplates. 

Representative images of the hollow MN-backplate assembly at each concentration 

demonstrated it was also possible to discriminate between the low and high glucose 

concentrations tested. Indeed, the difference in colour intensity produced from 

normal glycaemia (4 - 7 mM) and hyperglycaemia (>7 mM) was visually apparent. 

Direct 3D printing of MNs has been previously attempted153,154, however, one of the 

main limitations is the resolution of the printer, as observed in the work in this 

chapter. To overcome this issue, some groups have developed post printing 

processing steps such as chemical etching155 in order to reduce the tip size of each 

MN projection. While this method has demonstrated the ability produce polylactide 

MN arrays capable of penetrating porcine skin, it did result in non-uniform MNs with 

uneven surface morphology in comparison to MN produced by conventional MEMS 

technology. The method deployed in this chapter of using a hypodermic needle as a 

master template has resulted in the production of a sharp tipped, bevelled edge MN 

with a more uniform surface than those fabricated with chemical etching following 

direct 3D printing. 

Other efforts involving electrochemical detection of glucose within the ISF using 

enzyme coupled electrode systems have been previously published. Silicon dioxide 

MN arrays fabricated using photolithographic methods coupled to an enzyme linked 

biosensor has shown rapid uptake of ISF (1 µL/s) through capillary action in vitro and 

subsequent highly sensitive detection of glucose concentration across a range of 0 

mM – 35.0 mM156. 

Similarly, swellable poly (ethylene glycol diacrylate) MNs fabricated using 

photolithography have been doped with enzymes to create wearable electrodes to 

allow the detection of glucose and lactic acid concentrations157. However both 

systems have yet to be successfully demonstrated using in vivo models. 

4.4 Conclusion 

In conclusion, the results obtained in this chapter illustrate a novel method to 

manufacture a single hollow MN integrated with a colorimetric detection method for 

glucose. The hollow MN was formed by creating a master template with a 
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hypodermic needle coupled with a 3D printed housing that allowed replication of the 

needle tip and the hollow bore. The negative silicone mould was then used to create 

a solid photopolymer based MN device with a sharp bevelled tip to aid skin 

penetration, which demonstrated extremely rapid fluid uptake through capillary 

action within 5 seconds. The single MN projection withstood a mean axial load of be 

0.27 N ± 0.04 N before fracture, which is greater than the 0.028 N – 0.030 N per MN 

measured in other reports that is required for skin penetration.  

A method to quantify the intensity of the blue colour change in the sensor backplate 

was developed by calculating the ChromB values from digital images of the backplate 

after the addition of glucose. By altering the concentration of the components of the 

sensor system, a linear colour change after 30 s was achieved when the integrated 

MN device was used to extract physiologically relevant concentrations of glucose in 

simulated ISF in vitro. The colorimetric paper based backplate provided a rapid and 

facile method to detect glucose after 30 s that enabled discrimination between 

normal glycaemia (4 - 7 mM) and hyperglycaemia (>7 mM) with the naked eye.  

This integrated device obviates the need for removal and further processing of the 

simulated ISF from the MN to obtain a glucose concentration and thus represents an 

important step towards the goal of an easy to use, minimally invasive, POC device as 

an alternative to fingertip blood sampling in diabetes. The calculation of the ChromB 

was demonstrated to be an excellent method to quantify the intensity of the glucose 

dependent colour change. In the development of a colorimetric test strip for salivary 

glucose, Soni et. al158 demonstrated that an office scanner can be used to quantify 

the intensity of the colour change. Placing the test strip in the office scanner would 

control the lighting conditions of the strip during the data procurement, however, as 

demonstrated in Section 3.2.2, calculation of ChromB does control for changes in 

ambient light. Measurement of ChromB value using digital photography removes the 

need for the paper sensor to be separates from the MN and placed in the scanner to 

be measured and, therefore, it is more convenient and compatible to a wider range 

of experimental set-ups and devices. One could easily envisage the digital camera 

used in this chapter being replaced with a mobile phone with on-board imaging 

software making it even more user friendly.  
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The next step in the development of this approach would be to produce 2D arrays of 

hollow MNs. Fabrication of a 2D MN array would increase the mechanical properties 

of the device and, therefore, decrease the risk of MN breakage while also increasing 

the number of channels for ISF to be extracted through capillary action. Finally, while 

the polymer mix selected to manufacture the MN device was previously used to 

produce MNs151 and demonstrates excellent wettability properties, thus acts to 

extract fluid extremely rapidly through capillary action, the biocompatibility of the 

polymer mix would need to be investigated. 
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Chapter 5 

5.0 Glucose detection using a hollow metal microneedle interfaced with 

an optical glucose sensor: the use of antioxidants to modulate signal 

response. 

5.1 Introduction 

5.1.1 Hollow Metal MNs 

Biocompatibility is one of the key requirements of a transdermal device as they are 

designed to be in contact with both the skin surface and the upper layers of the 

epidermis. With the widespread use of silicon in MN manufacture using 

microelectromechanical systems (MEMS) technology, the biocompatibility of the 

silicon used has generated much interest. There is a risk of MN fracture upon 

insertion resulting in residual silicon remaining in the skin after use due to its brittle 

nature159. The presence of granulomas have been observed in response to the 

presence of silicon in the skin which is a sign of immune response and 

inflammation160. With the large range of immune cells present in the epidermis, the 

resultant release of cytokines and pro-inflammatory markers upon insertion of 

foreign bodies can elicit an immune response thus decreasing the biocompatibility of 

the material161.  

Metals such as stainless steel and titanium are commonly used in medical devices 

due to their mechanical properties and biocompatibility. Titanium has been used in 

prosthetics and implants162 whereas hypodermic needles are commonly 

manufactured from stainless steel. The use of stainless steel to make MNs has the 

advantage of both the mechanical robustness of the metal thus decreasing the risk 

of MN fracture upon insertion into the skin and the well-established biocompatibility 

of the material. Unlike hydrogel MNs which become unable to penetrate skin after a 

single use, metal MNs do carry the risk of accidental needle stick injury and as such 

may increase the risk of transmitting infection between users. However, due to the 

decreased length of the needle this risk may be quite low compared to full sized 

hypodermic needles as the shorter MNs are not capable of reaching the blood 



129 
 

capillary system in the skin and so are unlikely to directly carry blood borne 

pathogens from one person to another. Additionally, the risk of infection from 

microbes on the skin has been shown to be lower through the use of MNs compared 

to conventional hypodermic needles163,164. 

5.1.2 Modulation of the colorimetric glucose sensor for the detection of 

hyperglycaemia. 

In the previous chapter, a glucose responsive backplate was developed that 

produced a linear colour change to glucose concentration within 0 – 10 mM. While 

the intensity of colour change enabled differentiation between low physiological 

glucose concentrations (< 5mM) and high physiological concentrations (> 7.5 mM) 

using the naked eye, some ambiguity remains in distinguishing between different 

grades of colour intensity. A simpler approach would be an “Off-On” detection 

system that only produces a colour change when a certain level of glucose is 

exceeded.  Thus the sensor would remain colourless in normal glucose 

concentrations and give a colour change when the concentrations of glucose indicate 

hyperglycaemia (> 7.5 mM). 

From the work undertaken in Chapter 3 (see Section 3.3.3), it was observed that 

reducing the concentration of the GOx/HRP enzyme mix while maintaining the TMB 

concentration in the sensing system, reduced the rate of TMB oxidation when 

glucose was added. While further reductions of GOx/HRP could potentially result in 

the desired “Off-On” response to hyperglycaemia, the reduced enzyme 

concentration would reduce significantly the kinetics of the colour change reaction 

for it to be of practical use. Therefore, to achieve an “Off-On” colour change in 

response to hyperglycaemia within in a practically useful time, an alternative 

approach was necessary.  

Interference with GOx based colorimetric tests for glucose has been reported with 

strongly reducing substances including ascorbic acid (AA), beta-lactam antibiotics, 

levodopa, and salicylates giving false negative results165. AA has shown inhibitory 

effects in colorimetric assays for uric acid, cholesterol and glucose involving hydrogen 

peroxide mediated changes in colour intensity166. This is due to the high affinity of 
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AA for peroxidase enzymes causing depletion of the H2O2 produced as shown in 

Scheme 5.1. 
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Scheme 5.1: Peroxidase catalysed oxidation of ascorbic acid to dehydroascorbic acid by hydrogen 
peroxide  

 

Clinistix reagent strips are a commonly used paper based colorimetric test for urine 

glucose that is based on the oxidation of o-tolidine in a GOx/HRP enzyme system. AA 

has been shown to cause a delay in the formation of the coloured compound that 

was proportional to the concentration of the AA (Table 5.1). Additionally, at 

increasing concentrations of glucose the resultant lag phase was decreased167.  

Table 5.1: Inhibition of colour change in Clinistix glucose test strips in the presence of AA 167 

 Time lag (s) at glucose concentration of : 

Ascorbate (mg/L) 2.5 g/L 5 g/L 7.5 g/L 

100 2 - - 

250 4 3 3 

500 7 5 4 

1000 22 9 7 

 

Similarly, using a 4-aminophenazone based dye which combines with phenol to form 

a quinoneimine in the presence of H2O2 (Figure 5.1), a delay in colour formation is 

observed when AA was added to the dye system155.  
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Figure 5.1 Trinder reaction, a H2O2 dependent formation of coloured quinoneimine dye used to 
determine glucose concentration1  

As both the ascorbic acid and dye compete for the available peroxide, oxidation of 

the dye and concomitant colour change is inhibited or delayed.  Thus, when 

monitoring the development of the coloured chromophore, a time delay form the 

start of the reaction is observed in which no visible coloured compound is generated. 

This delay or lag phase has been found to be proportional to the concentration of the 

ascorbic acid concentration and inversely proportional to the concentration of 

glucose1.  

This lag phase may be exploited in order create a sensor to produce a colour change 

within a predetermined time period only if the concentration of glucose was high 

enough, thus indicating hyperglycaemia. In lower glucose concentrations, the lag 

phase would be increased and, therefore, no colour change would occur within the 

predetermined time period. 

5.1.3 Vacuum assisted suction through MNs 

MNs coupled with vacuum force have been used previously to extract ISF from the 

skin. However, they have largely involved piercing the stratum corneum with solid 

MN arrays followed by the application of a separate vacuum device to draw fluid 

through the micropores created after the MN array was removed168. In this chapter, 

a flexible housing for the hollow MN device was designed in order to aid the 

extraction of fluid. The integrated housing generated a small negative pressure 

created by the press and release of the housing to draw fluid through the MN and 

into the sensor backplate. 
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5.2 Aim and Specific Objectives 

The main aim of the work undertaken in this chapter was to manufacture a hollow 

MN device with the MN projection composed of stainless steel coupled with a paper 

based sensor that underwent a colour change only in high concentrations of glucose 

that indicated hyperglycaemia. The specific objectives were: 

i. Manufacture of a hollow metal MN device that can extract fluid rapidly 

and transport it into an attached backplate. 

ii. Development of a colorimetric sensor based on GOx/HRP, TMB and 

ascorbic acid to indicate hyperglycaemic concentrations.  

iii. Investigate the benefit of incorporating vacuum assisted suction within 

the MN housing to facilitate rapid solution withdrawal. 

iv. Integration of the paper based sensor backplate with the hollow MN 

device and subsequent in vitro testing to investigate its ability to rapidly 

indicate hyperglycaemic concentrations in simulated ISF. 

 

5.3 Results and Discussion 

5.3.1 Manufacture of Hollow Metal MN device 

 BD Micro-fine Ultra 32G needles were used to create the metal hollow MN device. 

The commercially available needles possessed a bevelled edge on each end. 

However, each side was not identical as demonstrated by the optical microscope 

image below (Figure 5.2). The end designed to pierce the skin to a depth of 4 mm 

possessed a bevel 1100 µm ± 12 µm in length. Therefore, it was not possible to use 

the full length of this end in the MN as the final projection would extend longer than 

1000 µm. The opposite end of the 32G needles had a bevelled end 417 µm ± 5 µm in 

Figure 5.2 Light microscope image showing both ends of a BD Micro-fine Ultra 32G needle. Scale bar is 
200 µm in both images 
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length. This enabled inclusion of the total length of this bevelled end and an 

additional portion of the needle shank to yield a final MN projection within the 1000 

µm limit.  

Initially, attempts were made to cut the needles to the desired length (i.e. 2 mm) 

using pliers but this resulted in the end of the needles being closed due to the 

compression from the pliers.  To circumvent this issue, the needles were cut to 

approximately 4 mm in length and then inserted in a custom made holder (Figure 

5.3).  

 

Figure 5.3 Custom holder used to reduce needles to correct length while remaining open. (Left) 
Baseplate into which top plate is placed. (Right) 2 mm deep upper plate with 4 circular holes (white 
arrows) 200 µm in diameter into which the needles are placed point downwards. 

 

The holder consisted of a baseplate with an upper plate 2 mm in depth attached 

together with screws. In the upper plate, holes were drilled using a drill bit which was 

100 µm in diameter. The 4 mm long needles were inserted into these holes with the 

needle point downwards and the excess material was filed away using abrasive wet-

or-dry sand paper (Figure 5.4).  
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Figure 5.4 Schematic diagram of needle placed point downwards into 200 µm diameter holes in needle 
holder. Needle is reduced in length by circular sanding until level with the surface of upper plate which 
yielded 2 mm long needles  

 

Initially grade P600 paper was used to remove the majority of the excess length of 

the needle then grade P1000 paper was used to remove the final ~0.5mm in order to 

remove small burrs in the metal walls of the needle and ensure the plastic holder was 

not substantially abraded. After removal from the holder the needles were washed 

in acetone to remove metal debris and a length of stainless steel wire (100 µm 

diameter) was inserted through each needle to ensure complete opening. Figure 5.5 

shows how the needle end that was closed after cutting with the diagonal cutting 

pliers was reopened using the sanding method.  

 

Figure 5.5 (Left) Photograph of needle cut with diagonal pliers showing how the end of the needle is 
crimped closed. (Right) Photograph of needle after sanding showing the reopening of the needle 
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A baseplate in which to house the 2 mm needle was created using a silicone moulding 

technique. As described in detail in Section 2.4.2, a master mould was designed in 

CAD and created using the Form 1+ 3D printer in the proprietary clear methacrylate 

based photopolymer. The master mould was used to make a negative mould using 

RTV silicone. The 2 mm hollow needle was placed in the centre of the negative mould 

and the MN baseplate, composed of TRIM, was polymerised around its base, leaving 

the needle tip exposed. An aliquot of 200 µL of TRIM was pipetted into the silicone 

mould before irradiation with 365 nm UV lamp for 60 mins (Scheme 5.2). 

After polymerisation, the MN with attached baseplate was removed from the mould, 

washed in ethanol and dried at 60 °C for 10 min. A representative photograph of the 

prepared MN is shown in Figure 5.6a and clearly reveals the crosslinked TRIM 

polymer baseplate with a single MN projection emerging. The bevel end of the 

needle was clearly hollow and emerged through the base plate to the other end. In 

addition, Figure 5.6b also clearly demonstrates the photopolymer coats the needle 

shank maintaining it in place and providing mechanical strength. In total, 10 MN were 

produced using this method with a mean MN projection of 590 µm ± 23 µm. 

 

Scheme 5.2 Photo-catalysed polymerisation of TRIM by free radical generator 1-Hydroxycyclohexyl 
phenyl ketone (Irgacure 184) and UV irradiation (365nm) 
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5.3.2 Flexible PDMS suction housing to aid fluid extraction  

In Chapter 4, the MN device prepared relied solely on capillary action to draw fluid 

through the MN opening and into the backplate. While the liquid extraction kinetics 

using this method was rapid, this was determined in solution and does not accurately 

represent tissue where the volume of ISF is not as large or readily accessible. To 

overcome any possible reduction in fluid withdrawal rate as a consequence of these 

issues, a modified housing for the MN device was also developed. The housing was 

prepared from PDMS in order to provide a suction force to draw fluid though the 

metal MN. The attachment was designed to be flexible enough to be slightly 

deformed when pressed with the fingertip as the MN was being applied. In this way, 

when the finger was released, the PDMS attachment would revert to its original 

shape and create a suction force through the metal MN, thus drawing fluid into the 

backplate. To create this attachment, a master mould was created using CAD and 

printed using the Form 1+ in clear resin as before (Figure 5.7). The mould was 

designed to allow the replication of an optically clear PDMS housing for the hollow 

MN device. The resultant square shaped housing with each side 15 mm2 in length, 

with a depth of 6 mm and possessed a square opening for the MN device itself with 

each side measuring 10 mm2 long. 

Figure 5.6 (a) Photograph of metal hollow MN in polymer baseplate. (b) stereomicroscope image of 
MN. Scale bar is 250 µm  
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Figure 5.7 (Left) CAD image of master mould for PDMS suction device (Right) Photograph of mould for 
PDMS housing created using 3D printer.  

In order to create a sufficient seal with the baseplate of the metal MN, the PDMS 

housing was designed with a segment of material that protruded from the length of 

the inner edge, as indicated in Figure 5.8. This design element was found to be an 

effective method to hold the square baseplate in place while it was fixed with 

adhesive. The assembled device with a blank paper backplate is shown in Figure 5.8.  

 

Figure 5.8 (Left) PDMS housing created from master mould. Arrow depicting inner edge used to hold 
polymer baseplate in place. (Right) Photograph of assembled device consisting of hollow metal MN in 
the polymer baseplate adhered to the PDMS attachment    
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Figure 5.9 shows the steps involved in the operation of the assembled MN device. 

The MN will be applied in order to pierce the metal hollow MN through the 

membrane to gain access to the glucose solution. Depression and subsequent release 

of the flexible PDMS housing by gentle finger pressure creates a negative pressure 

within the MN device that will aid fluid extraction through the hollow MN and into 

the sensor backplate for analysis.  

In order to test the capability of the metal MN device with the PDMS attachment to 

withdraw fluid through suction, 30 mL of a 1 mM methylene blue dye was added to 

a petri dish. Two glass slides were placed lengthways across the top of the dish and 

separated by a gap of 5 mm to act as a solid support. The assembled metal MN 

device, shown in Figure 5.8, was then pierced through a layer of parafilm and placed 

on the petri dish in such a way so as the MN was in contact with the methylene blue 

dye between the glass slides (Figure 5.10). The flexible PDMS attachment was then 

depressed with thumb pressure and released. It was observed that a small volume of 

methylene blue dye was drawn up through the MN and into the backplate reservoir 

containing a blank paper square confirming the feasibility of the device.  

 

Figure 5.9 Schematic of the operation of the PDMS housing and single hollow MN device 
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Figure 5.10 Schematic of experimental set up to investigate the capability of the MN device to draw 
Methylene blue solution from the container through the MN and into the paper backplate. The glass 
slides were in place to provide a solid support to allow the flexible PDMS attachment to be pressed 
and released.  

 

As demonstrated in Figure 5.11, photographs taken 5 s following release of thumb 

pressure reveal successful extraction of a small volume of MB solution that had been 

absorbed rapidly by the paper backplate. This demonstrated that the suction 

pressure generated from the press and release of the PDMS housing was sufficient 

to cause the movement of the MB solution from the MN tip, through the hollow MN 

and into the paper backplate, contained within the assembled device. 

 

 

 

 

 

 

 

 

 

Figure 5.11: Photograph of assembled hollow MN device 5 s after press and release showing 
extraction of MB solution into black paper backplate 
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It was noted that although the blue colour could be observed through the PDMS 

attachment, the PDMS material was not completely optically clear. This was due to 

the uneven surface of the mould that is inherent to the 3D printing technology and 

the polymer material used to create the mould. This resulted in the PDMS having a 

slightly uneven inner surface which led to the light becoming diffuse as it passed 

through, resulting in a blurred image. To overcome this, the mould was modified 

slightly by placing a glass microscope coverslip to the uneven mould surface in the 

visualising region of the backplate. (Figure 5.12). 

 

Figure 5.12 Cross sectional CAD images of mould used to create PDMS attachment. (Left) Original 
mould. (Right) Mould with added glass slide layer. 

 

The glass slide provided a smooth surface for the curing of the PDMS and resulted in 

much more optically clear polymer window through which the colour of the paper 

could be observed. To demonstrate this, paper squares were spotted with a small 

volume (~2 µL) of methylene blue solution and photographed when placed in the 

non-modified PDMS housing or the modified glass slide PDMS housing. A photograph 

of the same paper square without the presence of a PDMS housing was taken for 

comparison (Figure 5.13).  
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Figure 5.13 Representative photographs of the same paper backplate with methylene blue dye stain 
as seen through different PDMS attachments. (a) No PDMS housing. (b) Non-modified PDMS housing. 
(c) PDMS housing with glass slide modification. 

 

While this modification to the mould created a more transparent PDMS housing 

through which to see the colour of the paper backplate than the original PDMS 

housing, the photographs were also analysed using ImageJ and the blue chromaticity 

of the methylene blue dye spots were calculated for comparison (Figure 5.14). 

 

Figure 5.14 Plot of ChromB of paper backplate with methylene blue as seen through original non-
modified PDMS housing and PDMS housing created with glass cover modified mould. Control is paper 
backplate imaged with no PDMS housing. ** p < 0.01. (n = 3) 

 

The mean ChromB value of the paper backplate with no PDMS housing was 0.118 ± 

0.011. When photographed through the modified PDMS housing the ChromB value 

was 0.102 ± 0.008 which is comparable to the control and was significantly greater 

(a) (b) (c) 
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than the non-modified PDMS housing (0.074 ± 0.004, p < 0.01). These representative 

photographs and quantification of the ChromB values demonstrate the benefit of the 

modified PDMS housing compared to the original housing with a clearer observation 

of the colour change to the end user of the device. 

 

5.3.3 Optimising the GOx/HRP, TMB based colorimetric sensor using ascorbic acid to 

modulate the glucose mediated colour change 

L-Ascorbic acid (AA) is oxidised by H2O2 to dehydro-L-ascorbic acid through a 

reversible two electron mechanism with a free radical intermediate (Scheme 5.1). 

Further oxidation into diketogulonic acid and tetrahydroxydiketohexanoic acid has 

also been reported169. 

To investigate the effect of AA on the H2O2 producing glucose sensor developed in 

the previous chapters, photophysical studies using the glucose sensor system with 

AA added were undertaken. Subsequent changes in the TMB intensity at 650 nm was 

determined by UV/Vis spectroscopy. Solutions containing GOx, HRP and TMB were 

prepared using the optimised ratios for a rapid linear glucose mediated colour 

change (625 U/L GOx, 125 U/L HRP and 3.33 mM TMB) as determined in Section 

4.3.4. These solutions also contained either (0 µM, 20 µM or 40 µM) AA which were 

the initial concentrations chosen to observe the effect on the generation of the 

coloured TMB compound. 5 µL aliquots of 7.5 mM and 10 mM glucose were then 

added to each solution and the absorbance at 650 nm measured every 10 s for 5 min. 

A plot of absorbance intensity at 650nm as a function of time was plotted for each of 

the three experiments and is shown in Figure 5.15.  In the solution containing no AA 

(Figure 5.15a), the oxidation of the TMB proceeded immediately after the glucose 

was added, with the 10 mM glucose experiment showing a higher rate of oxidation 

than the 7.5 mM glucose experiment, consistent with the results obtained in Section 

4.3.4.  When 20 µM AA was added to the sensor system, the kinetics of the reaction 

changed significantly (Figure 5.15b), with an initial period where the TMB was not 

oxidised, as demonstrated by no substantial change in the absorbance from the 

baseline in the initial 10 s. This delay in intensity increase lasted longer (50s) for the 

7.5 mM glucose experiment than for the 10 mM glucose experiment (20s), consistent 
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with the hypothesis that more glucose generates more peroxide that oxidises AA in 

preference to TMB.  

The results in Figure 5.15c show that the effects of the AA on the kinetics of the 

reaction were more pronounced as the concentration was increased. The 10 mM 

glucose solution started to increase from the baseline at 30 s and the 7.5 mM glucose 

solution increased at 90 s.  This demonstrated that the lag phase could be increased 

by including more AA within the sensor system.  

The results of these experiments demonstrated that AA could be used to modify the 

glucose sensor to give a blue colour change only in hyperglycaemic conditions within 

a given time period, for example within 60 s. A time constraint had to be specified as 

the inclusion of AA did not stop the colour change reaction from occurring in normal 

glucose concentrations, however, it did introduce a substantial lag phase before a 

colour change occurred between  a 10 mM glucose sample (hyperglycaemia) and 7.5 

mM (normal glucose).  

 

   )  
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Figure 5.15 UV/Vis spectra of oxidation of TMB by GOx/HRP in solutions containing several 
concentrations of AA. Absorbance was measured at 650 nm at 10 s intervals. Circles represent 
solutions spiked with 10 mM glucose. Squares represent 7.5 mM glucose. Error bars are standard 
deviation (n = 3) (a) No AA (b) 20 µM AA (c) 40 µM AA 

(a) 

(b) 

(c) 
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5.3.4 Glucose sensor embedded backplates with ascorbic acid to indicate 

hyperglycaemia  

Following the solution experiments described in Section 5.3.3 that used UV-Vis 

spectroscopic detection, the next step was to determine if a similar effect occurred 

when the AA modified sensor was incorporated into paper backplates. The 

concentrations of the sensor and AA optimised in the UV-Vis experiments were not 

directly translatable to the paper backplates due to the way the backplates were 

prepared. For example, as the backplates were dried following immersion in sensor 

solution, the addition of a small volume of glucose solution (1 µL) to the backplate 

modifies the concentration of both the sensor and AA. Therefore, the quantities of 

sensor and AA used to create the paper backplates had to be determined 

experimentally using the paper backplates, rather than using the concentrations 

determined in the UV-Vis experiments. 

Sensor backplates were prepared as previously described (Section 2.2.7). To add the 

AA to the backplates, the paper squares embedded with the enzymes and TMB were 

allowed to dry for 60 mins at room temperature before being submerged in aqueous 

solutions of AA at the following concentrations – 0 mM, 2.5 mM, 5.0 mM, 7.5 mM, 

10 mM, then dried at RT for 60 mins.  

60 s was chosen as the measurement time to indicate hyperglycaemic conditions as 

this would provide results in a timely manner in a POC device.  The backplates were 

tested using glucose concentrations of 10 mM and 7.5 mM as these were the key 

concentrations in hyperglycaemia ( > 7.5 mM), therefore 1 µL aliquots of each glucose 

concentration in PBS were added to each backplate and a photograph of each was 

recorded after 60s (Figure 5.16)  
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Figure 5.16 Photographs of paper backplates with embedded TMB and GOx/HRP sensor systems. A 
range of concentrations of AA (0 mM – 10 mM) were added to each backplate. Photographs were 
taken 60 s after 1 µL aliquots of either 10 mM or 7.5 mM of glucose were added to each backplate 

 

After 60 s, the most intense colour change was observed in the control (0 mM AA) 

backplates for both concentrations of glucose. Similarly, both concentrations of 

glucose resulted in a colour change in the 2.5 mM AA backplates, although these 

were less intense than the control backplates. In contrast, only the hyperglycaemia 

concentration (10 mM) showed a colour change in the 5.0 mM AA backplate while 

the normal glycaemia (7.5 mM) gave no colour change. Notably, the colour change 

in the hyperglycaemia concentration in the 5.0 mM AA backplate was less intense 

than either the control or 2.5 mM AA backplates. No colour change was observed for 

either glucose concentration in the 7.5 mM or 10.0 mM AA backplates. These results 

can be explained through the inhibitory effect of the AA causing a longer lag phase 

before the TMB oxidation takes place. The more AA there is available to react with 

the hydrogen peroxide generated, the longer it takes for the TMB to become oxidised 

and any colour change to be realised.  Based on the results shown in Figure 5.16 

above, 5mM AA containing sensor backplates produced the optimum result as no 
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colour was obtained within 60 sec in 7.5 mM glucose solution while a visibly apparent 

blue colour was observed for the 10 mM glucose solution, clearly differentiating 

between normal and hyperglycaemic concentrations of glucose.  .   

These 5.0 mM AA backplates were then tested using a wider range of glucose 

concentrations to mimic the clinically relevant measurements in diabetes. 4.0 mM 

and 7.5 mM glucose solutions were included to mark the lower and upper bounds of 

the normal range of glucose in the blood. 10 mM and 20 mM were used to represent 

hyperglycaemia. 1 µL aliquots of these glucose solutions were pipetted on to the 

backplates in triplicate and photographs were recorded at 60 s intervals for 5 mins. 

A representative image of each time point is shown in Figure 5.17. 

 

Figure 5.17 Photographs of sensor backplates containing TMB, GOx/HRP and 5 mM AA. Image taken 
at 60 s intervals after 1 µL aliquots of a range of concentrations of glucose were added to each 
backplate (0 mM – 20 mM) 
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For the 0 mM glucose, no colour change was generated over the course of the 

experiment. When 4.0 mM glucose was added no colour developed until a faint blue 

spot appeared after 300 s. The upper limit to normal glycaemia (7.5 mM glucose) 

caused no colour change at 60 s however at 120 s a coloured spot was generated that 

further developed throughout the remainder of the experiment. The first 

hyperglycaemia concentration of 10 mM glucose developed a coloured spot within 

60 s that remained thereafter. Similarly, the, 20 mM glucose solution produced a 

coloured spot at 60 s that further developed until the end of the experiment. 

As can be observed from the images in Figure 5.17, the colorimetric response to 

glucose produced both blue and yellow coloured spots depending on the progress of 

the reaction and as a consequence, the oxidised species generated. Therefore, 

quantifying blue chromaticity alone would not accurately reflect the reaction kinetics 

by proving a low reading for a reaction that has already progressed through the blue 

single oxidation product to the yellow di-oxidised product.  By converting the images 

to grayscale, the intensity is less dependent on the type of colour but more by the 

intensity. Therefore, the images at each time point in Figure 5.17 were converted to 

an 8-bit grayscale image using ImageJ170 (Figure 5.18a).  The mean gray values of the 

coloured areas of each backplate were then obtained and the intensity of colour was 

calculated using Equation 5.1: 

Intensity (a. u. ) = 255 − Mean Gray Value   Equation 5.1 
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Figure 5.18 (a) Grayscale image of backplates from Fig. 5.14 (b) Plot showing the intensity of the colour 
change in each backplate at 60 s intervals in response to addition of glucose solutions (0 mM – 20 
mM) 

(a) 

(b) 
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As can be observed in Figure 5.18b, the intensities of the coloured spots correlated 

to what was observed by the naked eye with the 0, 4 and 7.5 mM glucose solution 

producing intensities that were low at 60s, while the 10 and 20 mM intensities 50-

fold higher at the same time point. Again, these results suggest that using 5.0 mM 

AA within the backplate and identifying a time–point of 60 s following application of 

the MN should be appropriate to discriminate between normal and hyperglycaemic 

conditions.    The next step was to interface the AA containing sensor backplate with 

the suction-assisted MN device and determine how effective this would be at 

discriminating glucose concentrations following extraction of glucose from simulated 

ISF. 

5.3.5 Incorporation of Ascorbic acid modified sensor backplate with hollow MN device 

for the Off-On detection of hyperglycaemia in simulated ISF.  

Sensor backplates containing 5 mM AA were prepared as described in Section 2.4.5 

and fixed onto the base plate of the hollow metal MN. The MN-sensor construct was 

then incorporated within the flexible PDMS housing and sealed using adhesive as 

described in Section 2.4.3. The same in vitro model as described in Section 5.3.2 was 

used to simulate penetrating the skin with thumb pressure used to provide vacuum 

and facilitate extraction of the glucose solutions via suction. The experiment was 

repeated in triplicate. Glucose concentrations (0 mM, 4 mM, 7.5mM, 10 mM and 20 

mM) in PBS buffer were used as simulated ISF and in each case photographs were 

taken at 30 s intervals for 120 s. Representative images are shown in Figure 5.19. 
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Figure 5.19 Photographs of sensor backplates in the assembled metal MN device after extracting 
glucose solutions (0 mM – 20 mM) at 30 s intervals  

 

The MN device successfully extracted the glucose solutions though the metal needles 

and into the paper backplates as evidenced by the wetting observed on the sensor 

backplates. The MN that extracted the control solution (0 mM glucose) did not 

produce any colour on the backplate. Similarly, the 4.0 mM glucose solution did not 

produce a colour response within the time-scale of the experiment (120 s). The upper 

range of normal glycaemia (7.5 mM glucose) did not produce a colour change 

between 0 – 60 s, however a faint blue spot was observed at 90 s which further 

developed to a more visually apparent yellow colour at 120 s. The first 

hyperglycaemic concentration of 10 mM glucose caused no colour change at 30 s but 

the backplate had developed a strong colour change by 60 s, which increased in 
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intensity throughout the course of the experiment. The highest concentration of 

glucose (20 mM) caused the most rapid colour change, with a readily visible coloured 

spot observed at 30 s which had increased in intensity at 60 s and remained through 

to the end of the experiment. As before, the images were converted to 8 bit 

grayscale. The intensity at 60 s were measured and are shown in Figure 5.20. 

Figure 5.20 Plot showing the intensity of the colour change at 60 s in the sensor backplate in Fig 5.19 
in response to the extraction of glucose solution using assembled MN devices (0 mM – 20mM) (n=3) 
* denotes p < 0.05 for intensity generated between 10 mM and 0 mM control and 20 mM and 0 mM 
control 

 

At 60 s, there was no significant difference between the grayscale values of the 0 

mM, 4.0 mM and 7.5 mM glucose solutions. This demonstrated that normal 

glycaemic concentrations did not cause a colour change within 60 s in the assembled 

device.  However, there was a significant increase in intensity for the 10 mM glucose 

solution when compared the 0 mM control (p < 0.05) and the increase in intensity for 

the 20 mM glucose when compared to the control (p < 0.05) at the same time point.  
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These results confirm that the device successfully indicates hyperglycaemic levels of 

glucose when the device is applied to the glucose solution for 60 s, with a colour 

change that is easily visible by the naked eye.  

A MN device consisting of an in-plane array of hollow metal needles has 

demonstrated successful extraction of ISF in human volunteers171.  The metal needles 

used in the fabrication of the device were also BD 32G pen needles as in this chapter, 

however the opposite longer bevelled end of the needles were used. This resulted in 

the production of MNs of 1000 µm, 1500 µm and 2000 µm height, which were 

substantially greater than the 600 µm MN reported in this chapter. The hollow MNs 

were fabricated using a CO2 laser cutter to control the MNs length and surrounding 

plastic housing. Glass capillary tubes were attached to the opposite end of each MN 

to act as a reservoir for the extracted ISF. Using a MN array consisting of five MNs in 

parallel, up to 16 µL of ISF was extracted from 14 human volunteers after a lag time 

of 30 - 120 s. The ISF collected in this study was used to determine transcriptome, 

proteome and exosome content and while it was acknowledged that ISF could be 

used to quantify glucose, no measurements have been reported using this device172.  

The crucial design aspect of this MN that allowed the successful ISF extraction was 

the concentric circular plastic ring of the housing around the opening of each MN. 

This concentric ring allowed the skin under the MN opening to remain uncompressed 

upon MN penetration. The authors assert that the pumping mechanism from the 

compression of the skin under the concentric ring of plastic to the uncompressed skin 

under the MN tip induced ISF to flow into the MN opening and into the reservoir. 

This design aspect could be incorporated in to the proposed device in this chapter if 

necessary to aid the extraction of ISF following in vivo investigations. 

5.4 Conclusion 

The results obtained in this Chapter demonstrate the use of a hollow metal MN 

device that can successfully extract simulated ISF in vitro and indicate the presence 

of hyperglycaemia within 60 s through a colour change. The detection of 

hyperglycaemia using a paper based sensor that is integrated into the MN device 

without the requirement for subsequent spectroscopic or chromatographic methods 
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is a novel approach. An additional novel aspect of this work was the use of AA to 

create a sensor that can discriminate relatively small differences in glucose levels 

through a visually apparent and non-ambiguous colour change using commercially 

available reagents without the need for complex synthetic routes and purification 

steps. The peroxide sensitive AA inhibited the formation of the coloured TMB 

product in physiologically normal concentrations of glucose (4 mM – 7.5 mM) within 

60 s. However in higher concentrations, the generated peroxide overcame the action 

of AA and oxidised the TMB into its coloured product to give a colour change as an 

indication of hyperglycaemia (>7.5 mM glucose) at 60 s. 

The device utilised stainless steel hollow needles due to their excellent mechanical 

properties and favourable biocompatibility profile, thus reducing the risk of MN 

fracture and skin sensitisation, often reported when using polymeric and silicon 

based MNs. Using 3D printing technology and silicone moulding, a PDMS attachment 

was coupled to the metal hollow MN that allowed the generation of a negative 

pressure upon the application of the MN that aided the extraction of ISF through the 

MN and into the paper based sensor backplate.  
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Chapter 6 

6.0 Conclusions and Future Outlook 

The work in this thesis has investigated MN based extraction and subsequent 

colorimetric determination of glucose within simulated ISF, in order to provide a 

minimally invasive method of indirectly monitoring glycaemia in the blood. Both 

hydrogel MNs and hollow MNs fabricated from methacrylate based polymers and 

stainless steel were used to provide a rapid means of extracting the simulated ISF 

and bringing it into contact with the glucose sensor. The enzyme based sensor was 

developed to generate a colour in response to glucose concentration and could be 

optimised to give a linear colorimetric response to quantify the concentration of 

glucose or provide an Off-On switch only sensitive to hyperglycaemic levels.  

Crosslinked PMVE/MA MNs have previously shown the ability to extract ISF in human 

subjects and the work in Chapter 3 has successfully demonstrated the integration of 

a sensor embedded backplate to these MNs that gives a visually apparent blue colour 

change in the presence of glucose. One of the main limitations of this approach in its 

current form was the time taken for the ISF absorb into the MN and move into the 

sensor backplate to interact with the sensor. It has been shown that using a paper 

based sensor backplate and increasing the length of the MN projections caused the 

response time to significantly decrease in vitro, however for use in a POC device 

future development should seek to lower the response time further.  

A single hollow MN device in Chapter 4 showed the ability to rapidly extract 

simulated ISF and move it into the sensor backplate within 5 s using capillary action 

in vitro, thus demonstrating a major improvement in the response time. The sensor 

was also optimised to provide a means of quantifying the concentration of glucose 

within the simulated ISF through the use of a digital camera. While larger differences 

in glucose concentrations, for example between hypoglycaemic conditions and 

hyperglycaemic conditions were visually apparent, further work could allow smaller 

changes to be measured using a smartphone camera and a calibration colour chart. 

Other development opportunities may include increasing the number of hollow MN 
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projections to produce a 2D array for superior mechanical robustness and to provide 

additional channels to extract ISF.  

Finally, Chapter 5 has detailed the production of a single metal hollow MN coupled 

to a flexible housing to provide ISF extraction through both capillary action and 

suction. The sensor was modified to give an Off On switching mechanism to identify 

hyperglycaemic concentrations in a visually apparent way that could find use to 

screen larger populations without the need from blood extraction or to alert 

diabetics to periods of hyperglycaemia that would then require administration of 

insulin or other hypoglycaemic agents. Future improvements could involve tailoring 

the sensor for the detection of hypoglycaemia. One potential method of achieving 

this would be to determine the time taken for the sensor to change colour when the 

glucose is in the hypoglycaemic range and use this as time point as a marker, i.e. if 

no colour change is visible before this time point then hypoglycaemia is present. 

In summary, a MN based approach to measuring ISF analytes has enormous potential 

to avoid the current issues with blood sampling, such as contamination with blood 

borne pathogens, reduction of needle stick injuries and increasing patient 

compliance due to convenience and decreased pain. This work demonstrates 

promising methods to extract ISF rapidly and the integration of colorimetric sensors 

for glucose to aid in the development of POC devices.  
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