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ABSTRACT  

 

There is currently a lack of understanding of the design principles and performance monitoring 

relating to the use of Integrated Constructed Wetlands (ICW) for the treatment of domestic 

wastewater. This lack of understanding is limiting their development for domestic wastewater 

treatment in Northern Ireland. The aim of this thesis is to improve the understanding of ICW 

performance for the treatment of domestic wastewater in Northern Ireland. This thesis 

achieves the following 6 objectives: 

 

1. Critically review existing knowledge on constructed wetlands, and specifically the use of 

Integrated Constructed Wetlands for the treatment of domestic wastewater. 

2. Determine key variables for assessing Integrated Constructed Wetland performance. 

3. Review the design, construction and operation of a full-scale Integrated Constructed 

Wetland located at Stoneyford to assess its ability to treat domestic wastewater. 

4. Design, build and monitor a small-scale research facility at Stoneyford. 

5. Offer advice to a revised guidance document for future Integrated Constructed Wetland 

provision for the treatment of domestic wastewater in Northern Ireland. 

6. Investigate the use of drones as a method of monitoring plant performance and identify 

links to wastewater treatment performance. 

 

This thesis considers the early life performance of Stoneyford Integrated Constructed Wetland 

in treating domestic wastewater in Northern Ireland. It details issues regarding the design, 

construction, operation and maintenance of Stoneyford ICW as a full-scale pilot system 

commissioned by Northern Ireland Water (NIW). 

This thesis uses water quality, weather and vegetation performance data from the Stoneyford 

ICW as a full-scale pilot scheme.  Water quality and flow data from a small-scale test rig helps 

further knowledge and understanding of design principals and wastewater treatment 

performance monitoring. 

Weekly samples were taken manually from each of the 5 ICW ponds and 8 beds of the test rig 

to monitor water quality over a 19-month period. Results found water quality to improve as it 

flowed through the 5 ponds of the ICW system. On average, water quality data showed a 
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reduction of 97% BOD, 86% suspended solids, 90% ammonia and 81.5% COD over the 19-

month period. Change in water depth, particularly for pond 1 had a significant detrimental 

impact on plant growth as illustrated by drone footage taken over a 7-month period. Seasonal 

differences were found during this period as the ICW and its plant life eco-system is becoming 

established. 

Analysis of the test rig water quality found a shallower depth of 50mm with a larger surface 

area of 40m2/pe was more effective in the treatment of domestic wastewater, although the 

differences were marginal at a small scale. 

The benefit of using a drone was apparent as it was able to highlight issues relating to plant 

growth not evident from walking around the ponds. New methods of monitoring plant growth 

were developed using 2D and 3D image analysis techniques. This allowed for a better 

understanding of plant performance over time in terms of volume, density and species 

differentiation. 

Stoneyford is the first full-scale ICW for the treatment of domestic wastewater in Northern 

Ireland. This research concludes that an ICW is a viable alternative to traditional wastewater 

treatment works in treating domestic sewage in Northern Ireland. 

  



14 
 

LIST OF ABBREVIATIONS 

 

2D  Two Dimensional 

3D  Three Dimensional 

BOD  Biological Oxygen Demand 

CAST  Co-operative Awards in Science and Technology 

CH4  Methane 

CO2  Carbon Dioxide 

COD  Chemical Oxygen Demand 

CW  Constructed Wetland 

DAERA   Department of Environment, Agriculture and Rural Affairs 

DARD   Department of Agriculture and Rural Development 

DEFRA  Department of Environment, Food and Rural Affairs 

DEHLG  Department of Environment, Heritage and Local Government 

DEL  Department of Employment and Learning 

Ds  Soil Depth 

Dw  Water Depth 

EMS  Environmental Management System 

EPA  Environmental Protection Agency 

FWS  Free Water System Constructed Wetland 

GHG  Greenhouse Gases 

HLR  Hydraulic Loading Rate 

HRT  Hydraulic Retention Time 



15 
 

HSSF  Horizontal Sub-Surface Flow Constructed Wetland 

ICW  Integrated Constructed Wetland 

MRP  Molybdate Reactive Phosphorus 

N2O  Nitrous Oxide 

NH3-N  Ammoniacal Nitrogen 

NI  Northern Ireland 

NIEA  Northern Ireland Environment Agency 

NISDS  Northern Ireland Sustainable Development Strategy 

NIW  Northern Ireland Water 

OS  Ordnance Survey 

PE  Person Equivalent 

PPS  Planning Policy Statement 

ROI  Region of Interest 

RZM  Root Zone Method 

SA  Surface Area 

SPA  Settlement Pond A 

SPB  Settlement Pond B 

SS  Suspended Solids 

SSF  Sub-Surface Flow Constructed Wetland 

TDS  Total Dissolved Solids 

TN  Total Nitrogen 

TP  Total Phosphorus 

TR  Test Rig 



16 
 

TSS  Total Suspended Solids 

UAV  Unmanned Aviation Vehicle 

VSSF  Vertical Sub-Surface Flow Constructed Wetlands 

W:L  Width:Length Ratio 

WFD  Water Framework Directive (2000/60/EC) 

WOC  Water Order Consent 

WwTW  Wastewater Treatment Works 

 

 

 

  



17 
 

NOTE ON ACCESS TO CONTENTS 

 

"I hereby declare that with effect from the date on which the thesis is deposited in the 

Research Office of the University of Ulster, the thesis shall remain confidential with access or 

copying prohibited. Following expiry of this period I permit 

1. the Librarian of the University to allow the thesis to be copied in whole or in part without 

reference to me on the understanding that such authority applies to the provision of 

single copies made for study purposes or for inclusion within the stock of another library. 

2. the thesis to be made available through the Ulster Institutional Repository and/or EThOS 

under the terms of the Ulster eTheses Deposit Agreement which I have signed. 

IT IS A CONDITION OF USE OF THIS THESIS THAT ANYONE WHO CONSULTS IT MUST RECOGNISE 

THAT THE COPYRIGHT RESTS WITH THE UNIVERSITY AND THEN SUBSEQUENTLY TO THE 

AUTHOR ON THE EXPIRY OF THIS PERIOD AND THAT NO QUOTATION FROM THE THESIS AND 

NO INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS THE SOURCE IS PROPERLY 

ACKNOWLEDGED." 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

CHAPTER 1. INTRODUCTION 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

  



19 
 

1.1 Introduction 
 

This thesis considers the early life performance of Stoneyford Integrated Constructed 

Wetland (ICW) in treating domestic wastewater in Northern Ireland. It details issues 

regarding the design, construction, operation and maintenance. The ICW is located close 

to Stoneyford village, County Antrim. This is the first time an ICW has been used to treat 

domestic wastewater for a village in Northern Ireland. Stoneyford ICW has therefore been 

considered by Northern Ireland Water (NIW) as a full-scale trial. This chapter gives 

background and justification to the research. It defines the thesis title and gives the 

research questions, aim and objectives. 

 

1.2 Research Background 
 

This research project has been supported through the Department of Employment and 

Learning (DEL) Co-operative Awards in Science and Technology (CAST) scheme with direct 

involvement with Northern Ireland Water. 

Constructed wetlands are used to treat a range of influents such as dairy farming, 

abattoirs, industrial effluents, combined sewage and storm-water flows and domestic 

sewage (Scholz, M., et al.,2007a; 2007b). This thesis considers a specific type known as an 

Integrated Constructed Wetland (ICW) as a sustainable alternative to the traditional 

domestic wastewater treatment works for the treatment of domestic wastewater. Figure 

1.1 illustrates an aerial image of Stoneyford ICW. 

An ICW is an engineered system specifically designed to simulate the bio-filtration 

processes of a natural system to remediate contaminated wastewater and mitigate the 

pollution of nearby water bodies. This is done using strategically chosen aquatic plants, 

suited to the specific site, which filter and remove contaminants from the water as it flows 

through the ponds of the constructed wetland. They are designed to work as an integrated 

ecosystem, combining the functions of the natural environment with human activities 

(Moshiri, G. A, 1993). In other words, they are a natural means of treating wastewater in a 

controlled and manageable method (Vymazal, J., 2011). 
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Figure 1.1 Aerial image of Stoneyford ICW. 

 

1.3 Research Justification 
 

The treatment of sewage in a traditional wastewater treatment works is typically capital 

and energy intensive. It is not sustainable in the long term. Sustainability was included 

within the Water Framework Directive 2000/60/EC (European Parliament, 2000) and water 

protection is integrated into EU sustainable development strategies (Northern Ireland 

Executive, 2010). 

These legislative requirements coupled with global pressures to develop sustainably have 

created a need in the water treatment industry to combine environmental protection with 

innovative engineering techniques. The use of an ICW is now regarded by NIW as a 

sustainable alternative to traditional wastewater treatment works and prompted the full-

scale development at Stoneyford.  
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There is currently a lack of understanding of the design principles and performance 

monitoring relating to the use of ICW’s for the treatment of domestic wastewater. This 

research uses data from the full-scale pilot scheme and a small-scale test rig to further 

knowledge and understanding of design principles and wastewater treatment 

performance monitoring. The use of a drone was investigated to determine its suitability in 

monitoring plant performance within the ICW. The findings of this thesis will aid the 

decision making process of future ICW provision in Northern Ireland.  

 

1.4 Research Questions, Aim and Objectives 
 

This thesis considers the following research questions: 

 

1. What are the significant variables that impact the treatment performance of an ICW for 

domestic wastewater? 

2. Can the design of an ICW be improved to optimise the performance of domestic 

wastewater treatment? 

3. What is the relationship between plants and wastewater treatment?  

4. Is an ICW effected by environmental, ecological and seasonal factors? 

5. Can the performance of plant growth be better monitored? 

6. Are ICWs a viable alternative to traditional wastewater treatment works in treating 

domestic sewage in Northern Ireland? 

 

The thesis has the following aim: 

Improve the understanding of ICW performance for the treatment of domestic wastewater in 

Northern Ireland. 

 

The thesis has the following objectives: 

1. Critically review existing knowledge on constructed wetlands, and specifically the use of 

Integrated Constructed Wetlands for the treatment of domestic wastewater. 

2. Determine key variables for assessing Integrated Constructed Wetland performance. 
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3. Review the design, construction and operation of a full-scale Integrated Constructed 

Wetland located at Stoneyford to assess its ability to treat domestic wastewater. 

4. Design, build and monitor a small-scale research facility at Stoneyford. 

5. Offer advice to a revised guidance document for future Integrated Constructed Wetland 

provision for the treatment of domestic wastewater in Northern Ireland. 

6. Investigate the use of drones as a method of monitoring plant performance and identify 

links to wastewater treatment performance. 

 

1.5 Thesis Structure 
 

The thesis has the following structure: 

 Chapter 1 Introduction:  

This chapter introduces the thesis by providing a background to the research and 

highlighting the aim and objectives of the study. 

 

 Chapter 2 Literature Review Background, Design and Performance of Constructed 

Wetlands:  

This chapter provides a critical review of literature identifying knowledge gaps. The 

chapter considers the different types of constructed wetland and their applications. The 

review then focuses on the performance of Integrated Constructed Wetlands and 

Horizontal Sub-Surface Flow wetlands in treating wastewater from various sources and the 

variables that may impact this performance. The literature review also discusses the 

contexts in which constructed wetlands are appraised, other than their ability to treat 

wastewater. Finally, the literature review details the current guidance available for ICWs in 

wastewater treatment within Northern Ireland. 

 

 Chapter 3 Stoneyford ICW and Test Rig Development:  

This chapter details the design and construction processes involved in the building of 

Stoneyford ICW and Test Rig. It gives information regarding the planning process, the 

details of design and the stages involved in the ICW construction, operation and 

maintenance. This chapter also details the design and justification for the development of 

a small-scale test rig for the investigation of design parameters of water depth and surface 

area. 
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 Chapter 4 Methods:  

This chapter describes and explains the methods used in the 4 main studies included 

within this thesis. The studies involved include stakeholder engagement, a full-scale 

Integrated Constructed Wetland at Stoneyford, a small-scale test rig within Stoneyford 

ICW, and the use of a drone to measure and monitor plant performance at Stoneyford 

ICW. 

 Chapter 5 Results:  

This chapter provides the results of the 4 main studies included within this thesis. The 

chapter provides analysis and discussion from the stakeholder engagement as well as 

analysis of data from the full-scale ICW and small-scale test rig at Stoneyford. The chapter 

also provides an analysis of data from aerial imagery captured by a drone to monitor ICW 

plant performance. 

 Chapter 6 Discussion:  

This chapter discusses the results of the research in relation to each of the research 

objectives. The chapter provides a summary of the key findings and their comparison to 

previous research. 

 Chapter 7 Conclusions:  

This chapter concludes the thesis by highlighting key findings and responding to the points 

made within the research questions. 

 Chapter 8 Future Recommendations:  

This chapter identifies the need for further research and highlights recommended topics of 

focus. 

 References 

 Bibliography 

 Appendices 
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2.1 Introduction 
 

This chapter reviews the treatment of domestic wastewater in Northern Ireland and identifies 

the need for more sustainable alternatives. The literature review provides a background to the 

design and performance of constructed wetlands. It considers the performance and analysis of 

Integrated Constructed Wetlands and Horizontal Sub-Surface Flow systems. This chapter 

provides a critical review of current guidance documents used for the implementation of ICWs. 

This chapter concludes with a summary of findings and identification of knowledge gaps for 

further research. 

 

2.2 The Need to Treat Domestic Sewage 
 

Sewage is defined as ‘waste water and excrement conveyed in sewers’ and is ‘generally a 

mixture of domestic waste water from baths, sinks, washing machines and toilets, waste water 

from industry and rainwater run-off from roads and other surfaced areas’ (DEFRA, 2002). 

Sewage can be a mixture of water which has been used for a variety of purposes in the home, 

at work or in leisure activities, rainwater from roads, footpaths and roofs and water used for 

business and industrial purposes’ (NIW, 2016a). Sewage contains organic matter, bacteria, 

chemicals and other detritus but the naturally occurring bacteria eventually breaks the most of 

sewage down as the microorganisms feed on the organic matter and release gases into the 

atmosphere through biological and chemical processes, while the rest remains retained 

(Heritage, J., et al., 1999). However, this process uses oxygen dissolved in the water which can 

cause further problems for plants and animals within and around the waterway. 

 

Sewage treatment works are an engineering system used to clean sewage and remove objects 

or organisms that have the potential to harm the environment. They attempt to reproduce 

what would naturally occur in the environment, by settling out the solid matter and then using 

bacteria to digest and break down the organic substances in a controlled manner. This is 

referred to as Primary and Secondary Treatment. Sometimes a third Tertiary level of treatment 

is required which involves the disinfection of secondary effluent to protect sensitive waters 

such as bathing or shellfish waters. It may also involve removing nutrients from the water to 

mitigate the effects of eutrophication. Eutrophication is defined by DEFRA as ‘the process 

where excessive nutrients, especially nitrogen and/or phosphorus compounds, cause an 

accelerated growth of algae and higher forms of plant life….which causes an undesirable 
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disturbance to the balance of organisms present in the water and to the quality of the water 

concerned’ (DEFRA, 2002).  

 

Allowing sewage to build up or flow directly into natural water bodies can cause various types 

of detrimental consequences for the environment and its ecology by contaminating water 

ways and spreading disease NIW, (2016a); DAERA-NI (2016a); Burnett-Hall, (2012).  

 

2.3 Sewage Discharge Regulation in Northern Ireland 
 

Due to its adverse impact on social and environmental communities, it is an offence to 

discharge sewage into any waterbody other than a designated foul sewer. There are numerous 

legislations that regulate the control, treatment and discharge of wastewater in Northern 

Ireland. The European Water Framework Directive 2000/60/EC (WFD) is the most integrated. 

When introduced in 2000, the aim of the WFD was to ‘achieve good surface water status, good 

ecological potential, and good groundwater status in all waters by the end of 2015’. The WFD 

has since been the main driver for the implementation of sustainable wastewater treatment 

infrastructure in Europe (Burnett-Hall, 2012).  

The Water Utility Regulation Group regulates discharges made by the Water Utility Sector in 

Northern Ireland. Northern Ireland Water (NIW) is responsible for discharges from all 

wastewater treatment works under the Water (Northern Ireland) Order 1999. Consent is only 

given to the discharge of water that meets the required quality and quantity of the discharge 

into the water environment. The consent standard for a treatment works normally consists of 

a requirement for Biological Oxygen Demand (BOD), suspended solids, pH, iron, total available 

chlorine and ammonia. Sometimes consent standards are given for nutrients such as nitrates, 

nitrites, total nitrogen and phosphorus (DAERA-NI, 2016a). 

 

2.4 Technologies used in Sewage Treatment 
 

The domestic sewerage system is typically a network of pipes, pumps and sewers that collect 

and carry sewage away from source to be cleaned and disposed. There are two main types of 

sewerage system used in Northern Ireland as described in Table 2.1. The sewage system 

carries the combined and foul sewage to the wastewater treatment works where it undergoes 
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six stages of treatment (Table 2.2) before being safely disposed in accordance with legal 

requirements as set by the Northern Ireland Environmental Agency (NIEA). Clean water 

typically goes to a nearby watercourse and sludge is disposed either by incineration or landfill 

(NIW (2016a); NI Direct (2016)): 

 

Table 2.1 Types of Sewage System used in Northern Ireland (NIW, 2016a). 

Type of sewage system Operation 

Combined sewers Carries both sewage and rainwater in a single pipe. 

Separate sewers Uses two pipes. One takes foul sewage to a sewage treatment works 

and the second carries rainwater (storm sewage) straight to a nearby 

stream or river, as rainwater does not require treatment. 

 

Table 2.2  Six Stages of Treatment (NIW, 2016a). 

Stage Purpose 

Preliminary: Removes large debris, sand and grit. 

First settlement: Removes the small solids. 

Biological phase: Removes things that are dissolved. 

Second settlement: Removes dead bacteria and their waste. 

Tertiary treatment: Removes any harmful germs. 

Sludge drying: Removes water so that it can be recycled as a fertilizer or a fuel. 

 

2.5 The Need for More Sustainable Sewage Treatment Methods 
 

The treatment of sewage in a traditional wastewater treatment works (WwTW) is typically 

capital and energy intensive which is not sustainable in the long term. The Northern Ireland 

Sustainable Development Strategy proposed ‘to provide, maintain and regulate the 

infrastructure necessary to deliver high quality water and sewerage services and acceptable 

levels of compliance with EU and other relevant standards’ (Northern Ireland Executive, 2010).  

The 2015 Report on the progress in implementation of the Water Framework Directive 

Programmes of Measures details the European Commission’s recommendations for member 
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states in order to improve their success in achieving the WFD objective. One recommendation 

made to the UK, which includes Northern Ireland, is as follows: 

‘Consider and prioritise the use of green infrastructure and/or natural water retention 

measures that provide a range of environmental (improvements in water quality, increase 

water infiltration and thus aquifer recharge, flood protection, habitat conservation etc.), social 

and economic benefits which can be in many cases more cost-effective than grey infrastructure’ 

(Northern Ireland Executive, 2010). 

These legislative requirements coupled with global pressures to develop more sustainable 

solutions have created a need in the water treatment industry to combine environmental 

protection with innovative engineering techniques. This has offered scope for developers and 

businesses to work responsibly whilst complying with these suitability legislative requirements 

(Pandey, G., 2001). Numerous engineering techniques are now available to remediate and 

prevent water pollution, for example, the full scale ICW development at Stoneyford by NIW. 

 

2.6 Constructed Wetlands 
 

Constructed wetlands are engineered systems designed to simulate the bio-filtration processes 

of a natural system to remediate contaminated wastewater and mitigate the pollution of 

nearby water bodies. This is done by using specific plants suited to the site which filter and 

remove contaminants from the water as it flows through the engineered system.  

Constructed wetlands are designed to work as an integrated ecosystem, combining the 

functions of the natural environment with human activities, to help enhance overall water 

quality (Moshiri, G. A, 1993). They are a natural means of treating wastewater, but through a 

controlled and manageable method (Vymazal, J., 2011). 

Constructed wetlands have proven to be effective in the removal of contaminants from 

wastewaters and differing types allow this method of wastewater treatment to be versatile. 

Table 2.3 highlights and compares the main differences between constructed wetland types.  
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Table 2.3  Summary of constructed wetland design. 

Variables FWS HSSF VSSF Hybrid ICW 

Soil Depth >15mm >300mm >500mm Various 150mm 

Water Depth >285mm <200mm <250mm <300mm <300mm 

Plant Type Emergent 

and/or 

Floating 

Emergent Emergent Various Emergent 

Surface Area 20-40m2/pe 5-10m2/pe 1-3m2/pe 3-10m2/pe 20-40m2/pe 

No. Ponds 1+ 2-5 2-5 Various >4 

Application Tertiary 

treatment of 

stormwater 

and municipal 

wastewater 

Municipal, 

domestic, 

industrial, 

food-

processing, 

agriculture, 

landfill. 

Landfill, 

domestic, 

municipal. 

Municipal, 

domestic, 

industrial, 

food-

processing, 

agriculture, 

landfill 

Municipal, 

domestic, 

industrial, 

food-

processing, 

agriculture, 

landfill 

Advantages Natural 

design, low 

maintenance. 

Small surface 

area, high 

flow capacity, 

low risk of 

human 

exposure. 

Low surface 

area, high 

concentration 

treatments, 

low risk of 

human 

exposure. 

Low surface 

area, variable 

applications, 

high 

treatment 

performance. 

Integrated 

design, social 

inclusion/ 

leisure 

facility, low 

maintenance 

required. 

Disadvantages Risk of 

human 

exposure to 

pathogens, 

large surface 

area. 

High 

maintenance/ 

operational 

costs. 

High 

maintenance/ 

operational 

costs, risk of 

clogging. 

High 

maintenance/ 

operational 

costs 

Large surface 

area, risk of 

human 

exposure to 

pathogens. 
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The constructed wetland principle has been applied to the treatment of a range of influents 

(Scholz, M., et al., 2007). They normally take the form of a number of ponds where influent is 

pumped, or passed by gravity through channels into each of the ponds sequentially to be 

treated. As the polluting influent flows through the ponds, it is subjected to a number of 

integrated processes such as sedimentation, filtration, nitrification, denitrification, sorption 

and plant uptake until it exits (Figure 2.1). Each pond has its own function depending on the 

level of contaminants. Generally, the first pond deals with heavier solids’ sedimentation 

whereas the final pond may render the water suitable for discharge into a nearby water body 

or watercourse. 

 

 

Figure 2.1 Processes of wastewater treatment within a constructed wetland. 

 

 

2.6.1 Free Water Surface Flow Constructed Wetlands 
 

Free Water Surface Flow Constructed Wetlands (FWS) are systems which contain areas of 

open water planted with emergent and/or floating aquatic species (Kadlec, R.H, et al., 2008). 

They are typically designed with a water depth of 285 to 300mm and a shallow media depth 

for plant rooting. A FWS schematic is shown in Figure 2.2. The water area is the main 
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treatment zone capable of treating around 30mm/d of wastewater (Kadlec, R. H., 2009). As the 

wastewater enters through an inlet, it flows freely within the pond where it is subjected to 

various physical, chemical and biological treatment processes.  

The FWS is an effective means of treating wastewater for the removal of organics and 

suspended solids due to presence of microbial processes and the filtration capabilities of the 

plants. They are commonly used as a tertiary treatment system for the treatment of storm 

water or municipal wastewater (Vymazal, J. 2011). Due to a risk of human exposure to 

untreated pathogens, FWS are not commonly used for the treatment of secondary wastewater 

(Kadlec, R.H., et al., 2008). Although FWS are of similar appearance to natural wetlands, their 

higher land requirement coupled with lower hydraulic efficiencies have resulted in them being 

less preferable to Sub-Surface Flow Systems (Kadlec, R.H., 2009). 

 

Figure 2.2  Free Water Surface constructed wetland cross section. 

 

2.6.2 Sub-Surface Flow Constructed Wetlands 
 

Sub-Surface Flow Constructed Wetlands (SSF) are systems which treat the influent as it passes 

through growth media below the surface of the wetland. This concept originated in Germany 

in the 1970’s (Brix H., (1987); Moshiri, G. A., (1993)) as the ‘Root Zone Method’ (RZM). Studies 

by Kickuth (1977) tested the treatment of municipal wastewater using soil, based on 
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knowledge from sewage farming practices in the UK (Kadlec, R. H., et al., 2008). Successful 

treatments of Biological Oxygen Demand (BOD), Total Nitrogen (N) and Total Phosphorus (P) 

meant that the RZM was a feasible substitute to traditional WwTW. Since then, the use of SSFs 

has become increasingly popular across Europe and the world for the treatment of various 

wastewaters (Brix. H., 1987).  

The design of a SSF typically consists of an impermeable bed overlain with soil, sand and/or 

gravel. This is planted with emergent macrophytes which treat the wastewater as it flows 

horizontally or vertically through the rhizosphere of the plant root zone (Moshiri, G.A, (1993); 

Kadlec, R.H., et al., (2008)). Unlike the FWS, exposure to untreated wastewater and 

subsequent health risks are improbable in a SSF. As a result, they are more likely to be used for 

the treatment of secondary wastewater (Kadlec, R. H., et al., 2008). 

 

Figure 2.3. Horizontal Sub-Surface Flow constructed wetland cross section. 

 

2.6.3 Horizontal Sub-Surface Flow Constructed Wetlands 
 

Horizontal Sub-Surface Flow (HSSF) Constructed Wetlands describe a system where influent is 

pumped or passed through an inlet into a shallow pond planted with emergent aquatic plant 

species. From here, it gradually flows horizontally across the area of the pond where it is 

subjected to a number of treatment processes and biochemical conditions.  
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As shown in Figure 2.3, the HSSF system is typically designed to flow downwards across a slight 

gradient of around 1% (US EPA, 1988). They have a shallow bed depth of around 500mm 

where at least 60% of the volume is occupied by soil and gravel (Kadlec, R. H., 2009). The 

higher ratio of plant media to water depth makes it more difficult for the influent to flow freely 

through the pond. This subjects the influent to various barriers which filter and treat it. This 

increase in barriers results in the improved treatment capacity of the HSSF wetland of 

approximately 70mm/d. This is more than twice that of a FWS despite it having a lower 

Hydraulic Retention Time (HRT) of approximately three time less (Kadlec, R. H., 2009).  

HSSF systems have higher maintenance costs than FWS (Kadlec, R. H., et al., 2008). They 

require much less land take than FWS with median size range of 100 times smaller (Kadlec, R. 

H., 2009) and are considered a more efficient system. However, FWS are preferred for the 

treatment of certain types of influent with a high contaminant concentration (Kadlec, R. H., 

2009). HSSFs were originally designed for the treatment of municipal and domestic 

wastewater. However, research has shown that they are successful in the treatment of 

wastewater from industry, food-processing, agriculture, various runoff waters, and landfill 

leachate (Vymazal, J., 2007; 2009).  

 

 

Figure 2.4. Vertical Sub-Surface Flow constructed wetland cross section. 
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2.6.4 Vertical Sub-Surface Flow Constructed Wetlands 
 

Vertical Sub-Surface Flow (VSSF) Constructed Wetlands are similar to HSSFs in that the 

wastewater is pumped or passed through a pond planted with emergent plant species. As 

shown in Figure 2.4 the influent is encouraged to flow vertically through a growth media of 

soil, sand or gravel, as opposed to horizontally. Unlike HSSFs which have a continuous flow of 

wastewater through the system, VSSFs are fed wastewater intermittently through batch loads.  

This method of loading results in the pond being flooded, encouraging wastewater to filtrate 

vertically through the sand and gravel in an upward or downward motion. As the wastewater 

filters through the growth media it is subject to a number of treatment processes before being 

drained off at the bottom (surface inlet) or on the surface (bottom inlet) (Kadlec, R. H., et al., 

(2008); Vymazal, J., (2011)).  

Flooding the pond using intermittent flow gives the pond time to completely drain between 

loads which allows the sand and gravel to aerate, providing good conditions for nitrification 

(Cooper, P. F., et al., (1996); Moshiri, G. A., (1993)). However, this reduces the system’s ability 

to denitrify the contaminant and allow gaseous nitrogen to escape into the atmosphere 

(Vymazal, J., 2011). VSSFs are typically designed as a near flat bed (approximately 1% slope) 

laid with a bottom layer of gravel, with a diameter of between 30-60mm. This layer is topped 

with increasingly smaller diameters of gravel until a layer of sand (approximately 80-100mm 

deep) is reached on the surface of the pond suitable for planting the emergent species.  

The total depth of the VSSF pond is around 800mm including around 500mm of media depth 

and a maximum of 250mm water depth (Cooper, P. F., et al., (1996); Kadlec, R. H., et al., 

(2008)). VSSFs have a land requirement of 1-3m2 /pe which is much less than that of the HSSF 

at 5-10m2 /PE (Kadlec, R. H., et al., 2008).  

VSSFs are known for their ability to oxidise ammonia and subsequently they are typically used 

for the treatment of landfill leachate and high concentrations of domestic and municipal 

wastewater. However, their poor ability to deal with suspended solids due to clogging (Cooper, 

P., 1999) coupled with the higher operation and maintenance costs (Kadlec, R. H., et al., 2008) 

has meant that VSSF systems are not as widely used as the HSSF systems (Vymazal, J., 2005). 
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2.6.5 Hybrid Constructed Wetland Systems 
 

Both HSSF and VSSF systems have their weaknesses by way of treatment capacities or 

efficiency (Cooper, P., (1999); Vymazal, J., (2007)). HSSF systems are good for the removal of 

suspended solids due to their efficient hydraulic retention, the reduction of BOD due to the 

release of oxygen from biological processes, and the treatment of ammonia through 

denitrification. However, HSSF are poor performers of nitrification due to a limited oxygen 

transfer capability as much of the oxygen is used during the denitrification process. As a result, 

HSSF systems are not effective in releasing the nitrogen from ammonia into the atmosphere.  

VSSF systems are good for the nitrification process due to the high oxygen transfer when the 

system becomes aerated. This allows them to be effective in the reduction of BOD and COD. 

Unfortunately, as they are not effective in treating suspended solids they are susceptible to 

clogging (); Cooper, P., et al., (1996); Cooper, P., (1999); Vymazal, J., (2007)).  

This led to development of hybrid constructed wetland systems to increase the efficiency of 

wastewater treatment (Vymazal, J., 2011). Hybrid systems were derived from the original Max 

Planck Institute Process (MPIP) systems of Dr Kathe Seidel in the early 1960s which combined a 

series of VSSF and HSSF filter beds to test treatment performance of aquatic plants (Kadlec, R. 

H., et al.,(2008); Vymazal, J., (2011)).  

Seidel focused her studies on the RZM of HSSF systems, which became the most commonly 

used system of that time (Kadlec, R. H., et al., 2008). Hybrid systems were further developed in 

Poland, France and the UK (Kadlec, R. H., et al., (2008); Cooper, P., (1999)). There are two main 

types of hybrid systems, based on whether it starts with a VSSF or HSSF system (Cooper, P., 

1999) as seen in Figure 2.5.  
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Figure 2.5  Hybrid constructed wetlands cross sections. 

 

2.7 Integrated Constructed Wetlands (ICW) 
 

Integrated Constructed Wetlands (ICW) are a relatively new addition to the constructed 

wetland concept with their origins in Ireland attributed to Rory Harrington in the 1990s. The 

concept was originally developed to enhance the environmental management of the Dunnhill - 

Annestown stream in County Waterford, Ireland (Figure 2.6) which was heavily polluted due to 

farmyard run-off (Scholz, M., et al., (2007); Harrington, R., et al., (2005)).  

The ICW design is based on the concept of FWS wetlands in that water flows freely by gravity 

above the surface of the soil (Harrington, R., and Ryder, C., 2002). However, ICWs differ from 

FWS wetlands in that they are an integrated method of managing the natural resources of 

both the land and water (Harrington, R., and Ryder, C., (2002); Dunne, E., et al., (2005)).  
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Figure 2.6 Location of Dunhill, County Waterford, Ireland (Google Maps, 2017). 

 

ICWs use a holistic approach to integrating the concept of constructed wetlands into the local 

landscape, soils, topography, and biodiversity. This creates a sustainable and viable 

wastewater treatment system which mimics the processes and developments of a natural 

wetland (Scholz, M., et al., 2007).  

ICWs were originally intended for treating farmyard dirty water and its associated high 

phosphorus concentrations. As such, the sizing and design of the ICW system was focused 

primarily on this basis (Carty, A., et al., (2008); Scholz, M., et al., (2007)). It has been 

recommended that the ICW wetland area is at least 1.3 times the farmyard area, separated 

into at least 4 pond cells with a width: length aspect ratio of 1:2.2 (Carty, A., et al., (2008); 

Scholz, M., et al.,(2007)).  

Although ICWs are based on the concept of FWS wetlands which require a minimum of 285mm 

water depth, ICWs are designed to have a maximum water depth of 300mm, with a 

recommended minimum of 100-200mm (Carty, A., et al., 2008). Despite this shallower depth, 
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an ICW incorporates the same land area requirement typically used by an FWS at 20-40m2/PE 

(US Environmental Protection Agency, 1988).  

The performance of ICWs in treating farm yard wastewater has been successful with removal 

rates of 95% Molybdate Reactive Phosphorus (MRP) and 98% ammonium-N claimed by 

Harrington, R. and McInnes, R., (2009). They have been trialled in Ireland for treating domestic 

wastewater and have achieved an average of 91.4% of Total Phosphorus and 90.1% MRP from 

secondary wastewater (Dzakpasu, M., et al., 2014).  

Due to the high performance of an ICW and their ability to integrate sustainably into the local 

landscape they are regarded as a viable alternative to conventional constructed treatment 

wetlands (Scholz, M., et al., 2007). However, like FWS wetlands, issues regarding their land 

take and the associated capital costs have prevented ICWs from becoming as common as their 

smaller SSF counterparts. 

 

 

Figure 2.7. Integrated Constructed Wetlands cross section. 
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2.8 Comparison of HSSF and ICW 
 

The use of a particular type of constructed wetland design is specific to the needs and 

expectations of the developer. Continuous improvements of wetland performance across all 

types of treatment wetlands means it could be possible to implement any one of the systems 

to get a desired result. For the purpose of this thesis the scope of research will be limited to 

the performance and analysis of Horizontal Sub-Surface Flow constructed wetlands and 

Integrated Constructed Wetlands. The reason for this scope is due to a number of points: 

 

 HSSF wetlands were originally designed for the treatment of municipal and domestic 

wastewater (Vymazal, J., 2007; 2009) and so are well renowned for their effectiveness and 

efficiency at doing so. Their high performance rate coupled with a low surface area and 

hydraulic retention time would deem HSSF systems more favourable, and thus more 

common for the treatment of domestic wastewater over ICWs. Therefore, it is suggested 

that further investigation of these systems will aid in developing an appreciation of their 

efficiency. It will enhance understanding of how performance of ICWs can be improved 

and become an alternative to traditional wastewater treatment systems.  

 

 ICWs are more widely used for the treatment of highly contaminated wastewater such as 

animal or industrial waste (Kadlec, R, H., 2009). However, in more recent years, the use of 

ICWs for the treatment of domestic and municipal waste is becoming more popular due to 

their low operational and maintenance costs and their ability to integrate wholly into the 

environment. Northern Ireland Water (NIW) has recently implemented the first ICW in the 

UK for the treatment of domestic and municipal waste at Stoneyford. It is hoped that this 

wetland proves to be an effective and sustainable alternative to traditional wastewater 

treatment works for NIW and they have invested considerable amounts in providing 

substantial apparatus for the collection, measurement and monitoring of treatment 

performance. Thus, it would be extensively advantageous to avail of this information in 

order to appraise the performance of a full scale ICW for the treatment of domestic 

wastewater, in comparison to other available wetland designs. 

 

HSSF and ICW wetlands have differences in their design, use and treatment capacities. A 

summary highlighting these differences can be found in Table 2.4. The vegetation type and 
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amount within these two wetland systems are very similar in that they are both planted with 

emergent species which are suited to the climate and conditions of the local area (Carty, A., et 

al., (2008); Ellis, J. B., et al., (2003)). 

 

Table 2.4 HSSF and ICW design summary. 

Feature HSSF ICW 

Surface Area 3-5m2/pe or 5-10m2/pe 5-10m2/pe or 20-40m2/pe 

Shape Uniform / Rectangular Irregular / Curved 

Water Depth Below Surface 50-300mm above surface 

Media Type Soil, Sand, Silt and Gravel Soil 

Media Depth 300-500mm <200mm 

Liner Artificial or clay Clay 

 

There are a number of different species which are suitable for use in treatment wetlands. The 

more commonly used species within HSSF wetlands are Phragmites australis (Common Reed), 

Typha latifolia (Reedmace), Schoenoplectus spp. (Bulrush) and Carex spp. (Sedges) (Ellis, J. B., 

et al., 2003).  

ICWs are also known to be planted with these species. They are more commonly planted with 

Carex riparia (Greater Pond Sedge), Glyceria maxima (Reed Sweet Grass) and Typha latifolia 

(Reedmace) (Carty, A., et al., 2008). 

HSSF wetlands were originally designed for the treatment of municipal and domestic 

wastewater. Research has shown that they are also successful in treating higher contaminated 

wastewaters from industry, agriculture, run-off and landfill leachates (Vymazal, J., 2007; 2009).  

ICWs however were originally designed for the treatment of agricultural wastewater (Carty, A., 

et al., (2008); Scholz, M., et al., (2007)) but have since proven to be very effective in treating 

other wastewaters from industry, food processing and domestic sewage (Dzakpasu, M., et al., 

2014).  
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2.9 Comparisons of Treatment Performance of HSSF and ICW 
 

HSSF and ICW systems are generally implemented depending on the various type of 

wastewater being treated. However, they are both capable of treating a number of different 

contaminants to varying degrees. Each of these contaminants is now discussed. 

 

2.9.1 Treating Ammonium 
 

Ammonium-N can be toxic to many plants so a high concentration of this within wastewater 

will cause problems for the macrophytes planted within the constructed wetlands and prevent 

optimum performance (Britto, J. D., and Kronzucker, H. J., (2002); Harrington, A., (2005)). 

Despite this, constructed wetlands have proven to be very effective in the removal of 

ammonium from various concentrations of wastewaters. 

For example, a lab study on the effectiveness of constructed wetlands for the tertiary 

treatment of petroleum refinery effluent found that average ammonia (measured as 

Ammoniacal Nitrogen (NH3-N)) removal was as much as 95% and overall toxicity of the 

wastewater was also reduced, suggesting that wetlands are effective even at high toxicity 

levels (Huddleston, G. M, et al., 2000). 

Although this was not a full-scale representation of a constructed wetland, and was based on 

the tertiary treatment of effluent, it suggests the potential that treatment wetlands have in 

removing ammonia from highly toxic sources. 

HSSF CW have also shown positive results in managing urban lake water quality with around 

53.8% removal of NH3-N (Cui, F., et al., 2011). However, much higher performances for 

ammonium removal can be seen for ICWs. A study at Glaslough tested the performance of an 

ICW at treating domestic wastewater and found an average NH3-N removal of 98% over a 

period of 2 years (Dzakpasu, M., et al., 2011). A similar study by Harrington, C., et al.,(2012) 

found a mass removal of 98.1%-99.9% ammonia-nitrogen over an 18-month period in a 

wetland treating digested separated swine wastewater.  

ICWs have been known to continue in effectiveness as the system matures, unlike other 

wetland systems. For example, a study of a 15 pond ICW system in Annesvalley Catchment in 

Ireland tested the long term performance of wetlands in treating wastewater. The study found 
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that the removal of ammonia-nitrate remained high at an average of 99.6% and showed no 

signs of decreasing with wetland maturity. There were, however, variations in removal 

efficiencies between seasons with spring and summer (99.4% and 99.7%) having a higher 

efficiency than autumn and winter (98.7% and 99.3%) although these were not significant as 

shown in Table 2.5 (Mustafa, A., et al., 2009).  

 

Table 2.5 Seasonal comparison of nutrient concentrations – Table 3 (Mustafa, A., et al., 2009). 

 

Dong, Y., et al., (2013) tested the impact of hydraulic loading and seasonal variations of 

ammonia-nitrogen removal within a constructed wetland and found seasonal variations in 

performance. However, this was due to significant flooding during the test period which 

increased the HLR and an overall average removal efficiency of 91.7% was still achieved (Dong, 

Y., et al., 2013).  

Overall, it can be concluded that ICWs can achieve higher ammonium removal rates than HSSF, 

even when shock loadings were introduced, or as the wetland matures. However, HSSF 

wetlands are still capable of treating ammonium contaminated wastewaters and could still be 

the better option for treating influent with lower ammonium concentrations. 

 

2.9.2 Treating Nitrogen 
 

Constructed wetlands have proven effective in removing 95.8% of Total Nitrogen (TN) from 

eutrophic water even under high concentrations and shock loading (Shui, Y. et al., 2011). HSSFs 

have again, showed how they are effective with a total nitrogen removal of 47.9% in Xing-qing 

Lake in Xi’an City (Cui, F., et al., 2011).  
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Another study tested the performance of HSSF wetlands using three different substrates (alum 

sludge, gravel or zeolite) at varied HRTs (3 and 4 days). Results showed that although HSSF 

wetlands are effective in removing TN from the wastewater, the substrate type and retention 

times have a major effect on the removal efficiency (Shuib, N. and Baskaran, K., 2011). 

ICWs have also proven to be effective in the removal of nitrogen from wastewater, resulting in 

high removal efficiencies of over 80% with an average NO3
-N removal of 96.9% over a 2 year 

study period found by Dzakpasu, M., et al., (2011). However, the previously mentioned study 

by Dong, Y., et al., (2013) found that although a high performance was achieved over the 2 

year period, there were significant reductions found when hydraulic loading rate was 

increased, which is similar to the findings related to ammonium removal.  

A study in Annestown, Ireland tested the long-term performance of ICWs in treating 

wastewater and found that the overall removal of nitrate-nitrogen over the 7 year study 

period was 86.8%, proving that the system remained effective over time. However this level 

decreased by 6.2% in 2007 which could suggest that efficiency will eventually decrease with 

wetland maturity, although this is not statistically significant (Mustafa, A., et al., 2009).  

Overall it can be seen that both HSSF and ICW systems are effective in the removal of nitrogen, 

however, an increased HLR or wetland maturity, may reduce the overall performance of either 

of the wetlands. 

 

2.9.3 Treating Phosphorus 
 

Wetlands are known for their ability to retain phosphorus through a number of biological and 

physical processes (Harrington, R., et al., 2009). The emergent vegetation used within 

constructed wetlands provide an additional source of organic matter to the wastewater which 

retains the phosphorus until degradation occurs. However, due to prevailing anaerobic 

conditions within the wetland, degradation is inhibited and thus, maintaining these anaerobic 

conditions is critical to the subsequent phosphorus retention of the wetland. Therefore 

constructed wetlands should be designed accordingly with an appropriate water depth to 

allow vegetation growth as well as detritus accumulation (Harrington, R., et al., 2009). 

ICWs were originally designed to treat wastewaters with a high concentration of phosphorus 

such as those found in agricultural activities. Thus, it is not surprising that these systems 
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perform quite highly in total phosphorus removal, however there are variations in research as 

to how well they perform under different conditions 

Scholz, M. et al., (2007) highlighted that phosphorus removal in wetlands was the most 

effective in the first 3 years of operation and showed high variations in reduction between 

summer and winter months (Dunne, E. J., et al., 2005). A later study by Scholz, M. et al., (2010) 

found a 90% reduction of Molybdate Reactive Phosphorus (MRP) concentrations with no 

significant differences between summer and winter months. This study also found that 

phosphorus removal did not vary with wetland maturity, despite earlier suggestions that 

phosphorus removal becomes inefficient after 5 years.  

Dzakpasu, M. et al., (2014) also evaluated the effects of long term Phosphorus loadings and 

hydrological inputs on Phosphorus treatment over a four year period at an ICW system at 

Glaslough (Figure 2.8). Average mass reductions of 91.4% were found although there was an 

overall reduction in mass retention with increased effluent flow volumes. This study also 

identified that young CWs (1-2 years) often have retention in excess of 90% but this rate 

declines sharply after 4 years, confirming Scholz’s earlier statement. 

Mustafa, A., et al., (2009) tested the long term performance of Annestown ICW system in 

Ireland and found the overall removal efficiency of MRP was 93.2% with no significant 

reduction with wetland maturity which is contradictory to Scholz, M., (2007) and Dzakpasu, 

M., et al., (2014). This study however, also found that removal efficiencies were highest in 

spring (95.7%), followed by autumn (94.9%), winter (93.2%) and then summer (90.7%) which is 

agreeing with Scholz, M., et al., (2010).  

Dong, Y., et al., (2011) tested the impact of hydraulic loading and seasonal variations MRP 

within a constructed wetland and found that mass removal efficiency varied between 99.5% in 

spring and 62.5% in autumn which was likely to be due to variations in loading rate from low in 

spring to high in autumn, again confirming with Scholz, M., et al., (2010) and Mustafa, A., et al., 

(2009).  
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Figure 2.8 Phosphorus removal over a 4 year period at Glaslough ICW (Dzakpasu, M. et al., 

2014). 

 

Despite the inconsistency of results on ICW performance under various conditions, the overall 

removal rate over time remains high for phosphorus. HSSF wetlands have also proven that 

their ability to remove phosphorus is much more than other common wastewater 

contaminants. Both HSSF and ICWs can achieve high removal rates of Phosphorus and have 

been proven to be effective in doing so. 

 

2.9.4 Treating Chemical Oxygen Demand (COD) 
 

Due to the natural developments involved in the operation of a constructed wetland, the 

reduction of Chemical Oxygen Demand (COD) is particularly high in comparison to other 

wastewater treatment methods and both ICWs and HSSFs have proved successful.  
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COD removal of 78.7% was found within a constructed wetland treating eutrophic wastewater, 

even under high concentrations and shock loading rate (Shui, Y., et al., 2011). Dong, Y, et al., 

(2011) found a reduction in COD removal efficiency from 97.87% in spring to 84.24% in 

autumn. It was suggested by Dong, Y. et al., (2011) that this could be due to the immaturity of 

the wetland system leading to a lack of microorganisms which are crucial for the reduction of 

COD. This disputes a study by Mustafa, A., et al., (2009) who found an overall long-term 

removal efficiency of COD of 94.9% with no significant reduction over time throughout the 7 

year study period.  

The previously mentioned study by Shuib, N., and Baskaran, K., (2011) testing the performance 

of HSSF wetlands using three different substrates at varied HRTs also investigated the 

reduction of COD as well as other contaminants. Results showed that reducing the HRT to 3 

days showed a slight decrease in the COD removal efficiency to 85 % using zeolite, however, 

the gravel and alum sludge substrates showed an increase in removal at 93% and 91% 

respectively. Again, this study would suggest that both the substrate type and HRT can have a 

significant effect on the removal efficiency of organic matter within HSSF systems, although 

removal efficiency still remained high (Shuib, N. and Baskaran, K., 2011). 

Again, it can be concluded that both HSSFs and ICWs can be effective in the reduction of COD 

for various wastewaters. However, there are disputes as to whether or not seasonal variations 

or wetland maturity can impact on either, although removal rates even at a limited 

performance are still adequate. 

 

2.9.5 Treating Biological Oxygen Demand (BOD) 
 

As with COD, the natural existence of biological organisms within constructed wetlands means 

that they are particularly effective in the reduction of BOD from contaminated wastewater, 

especially in relation to ICWs. 

A study on the long term performance of ICWs in Ireland found a BOD reduction of 97.6% 

which is similar to comparable FWS systems in the USA, but higher than other wetlands 

treating similar influents (Mustafa, A., et al., 2009). A similar study in Ireland found that a 

newer constructed wetland system at Glaslough had a BOD removal of 99.4% which was 

higher than the more mature system at Dunhill with 95.2%, contradicting previous theories 

that removal increases with maturity (Kayranli, B., et al., 2009).  
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Studies have also shown that BOD removal can be slightly impacted by seasonal variations 

from 99.37% in spring to 96.29% in autumn (Dong, Y., et al., 2013), although these variations 

do not cause significant reductions in the overall performance of the wetland. 

Constructed wetlands have also shown potential to reduce BOD from highly toxic wastewater 

sources. For example, a lab study on the effectiveness of constructed wetlands for the tertiary 

treatment of petroleum refinery effluent found that average BOD5 removal was as much as 

80% and overall toxicity of the wastewater was also reduced (Huddleston, G. M, et al., 2000).  

Overall, it can be concluded that constructed wetlands are effective in the removal of BOD 

from various wastewaters, especially ICWs which tend to perform higher than other types of 

wetlands.  

 

2.9.6 Treating Total Suspended Solids (SS) 
 

Total Suspended Solids (SS) removal is generally very efficient within constructed wetlands, 

however, increases in hydraulic loading rate and subsequent reductions in retention time have 

been known to reduce the performance as the high rate does not allow the sediment 

adequate time to settle within the ponds (Dong, Y., et al., 2012). A SS removal efficiency of 

93.7% was recorded in a long term study of the 15 pond ICW in the Annesvalley Catchment 

Area, Ireland, which was explained by the large area and subsequently high retention times 

(Mustafa, A., et al., 2009).  

A similar study in Ireland found that a newer constructed wetland system at Glaslough had a 

SS removal of 99.5% which was higher than the more mature system at Dunhill with 97.2%, 

contradicting previous theories that removal increases with maturity as shown in Figure 2.8 

(Kayranli, B., et al., 2009). It should be noted however that Glaslough had 5 ponds within the 

ICW, while the system at Dunhill comprised of 4 Ponds, which may have contributed to the 

poorer performance of SS removal. 
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Figure 2.9 Contaminant removal comparison between 1 year old system at Glaslough and 5 

year old system at Dunhill (Kayranli, B., et al., 2009). 
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2.9.7 Microbial Removal 
 

Another concern in wastewater management is the treatment of microbial organisms. These 

organisms allow for the growth of bacteria or faecal coliforms which can have a significant risk 

to human health. HSSF and ICW systems have proven to be capable of removing microbes 

from the wastewater, however, ICWs have demonstrated a particularly high performance rate.  

Boutilier, L., et al., (2009) suggested that faecal coliform removal (particularly E-Coli) in 

treatment wetlands was due to several mechanisms, including adsorption, sedimentation and 

more significantly the inactivation of the coliform due to the absence of sediment (Boutilier, L., 

et al., 2009). 

McCarthy, G., et al., (2011b) studied the microbial removal from liquid piggery wastewater in 

an ICW under 4 different treatment methods of standard, effluent recycling, high nutrient 

loading and high flow rate. Results showed that flow through the cells reduced mean counts of 

coliform, yeasts, moulds and spore-forming bacteria across all treatments despite seasonal 

variations. McCarthy, G., et al., (2011a) investigated the removal of pathogenic and indicator 

micro-organisms in ICW systems treating agricultural wastewater. 

Results from this study were similar to McCarthy, G., et al., (2011b) in that constructed 

wetlands proved effective in the removal of Escherichia coli and Enterococcus, and any 

detected Salmonella within the influent, was no longer detected in the effluent. These studies 

show how ICWs are effective in removing most of the microbes within the wastewater, even 

under different loadings and seasonal variations, demonstrating the potential for constructed 

wetlands to be implemented as a means of treating high concentrations of organic waste. 

 

2.9.8 Treating Other Contaminants 
  

As well as the more common contaminants discussed above, constructed wetlands have been 

known to be successful in the reduction of heavy metals (Grisey, E., et al., (2012); Korsah, P. E., 

et al., (2014) Sultana, M., et al., (2015)), Phthalate Acid Esters (Zhou, Q.H., et al., (2005); 

Xiaoyan, T., et al., (2015), Hydrocarbons (Korsah, P. E., et al., 2014), Monochlorobenzene 

(MCB) (Braeckevelt, M., et al., 2007a; 2007b), antibiotics and Antibiotic Resistance Genes 

(ARG) (Chen, J., et al., (2014), Chen, J., et al., (2016), Choi, Y., et al.,(2016)) and estrogenic 
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hormones, progesterone and testosterone (Vymazal, J., et al., (2015); Papaevangelou, V.A., et 

al., (2016)) from wastewater from various sources. 

 

2.10 Variables that Influence the Treatment Performance of Constructed Wetlands 
 

The performance of a constructed wetland in treating wastewater is influenced by a number of 

variables. These include design, hydraulics, climate and planting.  

 

2.10.1  Water Depth 
 

Water depth influences the hydraulics of the wastewater flow through the system which can 

either enhance or limit treatment performance. A greater water depth will increase the 

volume of flow through the wetland and, providing the surface area does not change, should 

reduce the hydraulic loading rate (HLR), subsequently increasing HRT. The higher HRT is 

associated with higher performance rates and thus, it could be assumed that a higher water 

depth would enhance overall wetland performance. However, Cui, L., et al., (2012) found that 

a greater water depth had a negative impact on plant growth. Performance of the wetland was 

negatively correlated with depth. This conflict in opinion suggests it is important to design the 

constructed wetland with an appropriate water depth which will allow for an adequate HRT 

without impacting on vegetation performance. 

 

2.10.2 Material Used in Pond Construction 
 

The depth and composition of material used to make the pond bed influences performance. 

HSSF wetlands tend to use a mix of gravel, sand and soil, while ICWs use just soil. Soil allows 

for the processes involved in wastewater treatment, while sand and gravel allow for more 

efficient flow through the system. Soil absorbs contaminants from the effluent and retains it 

within its structure. A study of plants and sediments used in the treatment of wastewater in 

ICWs found that 74% of phosphorus and 52% of nitrogen was removed and stored within the 

soils and sediments. This is substantially higher than the <1% of each stored within the plants 

(Mustafa, A., Scholz, M., 2011b). This illustrates the role of soil and sediment in retaining the 

nutrients is more influential to wetland performance than the role of plants (Figure 2.10). 
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Figure 2.10 Nutrient storage comparison between sediment and plants (Mustafa, A., Scholz, 

M., 2011b). 

 

The removal of contaminants involves processes which may be directly, or indirectly 

influenced by soil type (Wu, S., et al., 2014). The removal of nitrogen from wastewater 

requires the process of denitrification. This needs organic carbon to allow for the exchange of 

electrons. Much of the organic carbon present in constructed wetlands is sourced from the 

wastewater and the soil itself (Wu, S., et al., 2014). 

The soils physical structure is also important. Garcia, J., et al., (2004) illustrated that a finer 

media allowed for a more effective hydraulic movement within HSSF systems by reducing 

dispersion. Wu, S., et al.,(2014) explains that soil structure allows for various microbial biofilms 

to develop which are vital for the treatment of BOD and COD as a more porous matter allows 

for a greater biofilm to be achieved. Morato, J., et al., (2014) confirms both these findings, 

demonstrating that a finer granulometry had a significant positive impact on the biofilms of 

HSSF systems, allowing for more effective treatment of Total Coliforms, Clostridium spores, 

and E. coli. 

Mustafa, A., et al., (2009) stated that most of the biological degradation of wastewater occurs 

within these biofilms present on the sediment and soils of the wetland suggesting porosity and 

granulometry are key contributors to the overall performance of constructed wetlands. 

However, Hijosa-Valsero, M., et al., (2010) found that the presence of soil was not necessarily 

crucial for the development of microorganisms as the plants themselves provide an adequate 

surface for the establishment of biofilms. 
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The characteristics of the soil, in terms of particle size, organic content and iron and aluminium 

concentrations, have also proven to have a significant influence on the wetlands ability to 

retain phosphorus with those with higher clay content and iron and/or aluminium 

concentrations being more effective (Mustafa, A., et al., 2009). A poor-quality soil structure 

may therefore lead to limited treatment of wastewater due to reduced absorption and may 

even allow for leaching into the subsurface as discussed by Dzakpasu, M., et al., (2012). 

Soil can indirectly influence hydraulic flow, plant growth and development rate (Stottmeister, 

U., et al., (2003); Garcia, J., et al., (2004)). A layer of topsoil of around 200-300mm is 

considered ideal for the growth and development of most macrophytes in a surface flow 

wetland like ICWs (Scholz, M. and Lee, B., 2005). Therefore, the composition, quality and depth 

of soil must be considered within the design of a constructed wetland to ensure that optimum 

performance can be achieved through adequate soil absorption and plant development. 

 

2.10.3 Pond Geometry and Landscape Fit 
 

Pond geometry is the overall layout and structure of the constructed wetland in terms of 

shape, size and number of ponds. HSSF systems tend to be a series of rectangular ponds 

constructed in linear sequence compared to the curved, non-linear geometry of the ICW. This 

difference can be explained by the hydraulic related performance of each system.  

HSSF systems have a higher soil content than ICWs. The flow rate through the system is 

restricted allowing for a longer treatment process. The rectangular design is suited to the 

subsurface flow wetlands as it allows for effective hydraulic movement and higher treatment 

efficiency (Garcia, J., et al., 2004). However, if the length: width ratio is too high flow through 

the system will be increased, despite the soil restriction, having a negative impact on 

performance. Gorra, R., et al., (2014) found that an irregular shaped HSSF can be effective in 

the removal of BOD from high organic loadings suggesting that this design aspect should be 

considered for future HSSF installations.  

ICW systems have a higher water content than HSSF. By integrating curves and dividing the 

area into a number of ponds, the flow rate is reduced and HRT increases (Scholz, M., et al., 

(2007a; 2007b)). If ICWs were to implement the same geometry as HSSF wetlands, or have a 

higher length to width ratio, the flow rate would be too high for the wastewater to be 

appropriately treated and the system would be ineffective (Scholz, M., et al., 2010).  
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Wetland geometry can impact performance through the area and number of wetland ponds. 

This is especially true for ICWs where performance is not only based on wastewater treatment, 

but also on the wetlands ability to integrate into the surrounding area. As such, ICWs must 

cover an adequate surface area, which is divided into a number of curved ponds to allow for 

appropriate HRT, whilst still maintaining the appearance of a natural system. Dunne E. J., et al., 

(2005) tested the use of 3 ponds to treat farmyard wastewater covering an area of twice the 

farm yard. 

Treatment performance was as much as 80-90% in summer months. This reduced in winter to 

around 50% and required a fourth monitoring pond to aid in the reduction of BOD5 and 

sedimentation before being released into the nearby river. Scholz, M., et al., (2007a; 2007b) 

suggested that 4 ponds or more covering an area of 1.3 times the contributing area would be a 

more effective option and that the curvier the ponds are the better as this helped with HRT 

and made the system more effective (Figure 2.11).  

 

Figure 2.11 Reduction of MRP with increased number of cells (ponds) (Scholz, M., et al., 2007a; 

2007b). 

 

Kayranli, B., et al., (2009) also suggested that the curvier design of an ICW at Glaslough could 

be a potential reason for better efficiency over the more systematic ICW at Dunhill, rather 

than the difference in cell numbers. Becerra-Jurado, G., et al., (2012) however recommended 

that a surface area of more than 1.3 times farmyard area and the number of ponds should 

increase from a minimum of 4 to at least 5 as this would be better for the removal of MRP as 

well as biodiversity enhancement. It was suggested that having the ponds close together with 

shore sloping and a mosaic layout will allow for a better biodiversity community connectivity, 
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whilst still keeping with the low aspect ratio of <2.2 required for adequate pollutant removal 

(Becerra Jurado, G., et al., 2009).  

This suggest that wetland geometry and landscape fit is not only important for the 

performance of the constructed wetlands in treating wastewater, but also their ability to 

integrate into the landscape and create a naturalised system capable of enhancing local 

biodiversity. 

 

2.10.4 Hydraulic Interactions 

 

2.10.4.1 Hydraulic Loading Rate 
 

According to Kadlec and Wallace (2008), Hydraulic Loading Rate can be defined as the ‘rainfall 

equivalent of whatever flow is under consideration’ and is calculated using the following 

equation: 

𝑞 = 𝑄/𝐴 

Where 𝑞 = HLR (m/d); 𝐴 = wetland area (m2); 𝑄 = water flow rate (m3/d) 

 

This definition is commonly used at the inlet of the wetland to calculate the HLR of influent of 

FWS wetlands. The HLR of constructed wetlands has been investigated for some time to 

determine its effects on, and contribution to, the wetlands performance. Most of these studies 

have concluded that HLR has had somewhat of an impact on the efficiency and/or 

effectiveness of the wetlands ability to treat various contaminated wastewaters. Garcia, J., et 

al., (2005) found HLR and water depth were more significant contributors to performance of 

the wetland than either aspect ratio or granular size. Harrington, R. and McInnes, R., (2009) 

concluded that HLR is crucial for the efficiency of treatment and that the design of constructed 

wetlands should be based on developing the most efficient HLR and subsequent performance.  

 

2.10.4.2 Factors that Influence HLR 
 

As HLR is determined using water flow rate and wetland area, it is relatively sensitive to 

variations in environmental factors such as climate and vegetation cover, as well as physical 
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factors of surface area and pond depth. Pei, Y., et al., (2010) investigated the influence of 

seasons on HLR and HRT within a Riparian wetland (adjacent to a stream or river), and the 

subsequent impact this had on the performance of nitrate removal. The study found that HLR 

was significantly impacted by temperature and climate, which then influenced the wetlands 

ability to remove nitrates from the water.  

Beebe, D., A, et al., (2014) and Tuttolomondo, T., et al., (2016) illustrate how water flows 

through wetland systems are greatly affected by various evapotranspiration rates, 

subsequently impacting on HLR, HRT and the overall performance of the system.  

As vegetation loses more moisture in hotter temperatures due to evapotranspiration, it must 

then uptake more moisture from the wetland in order to survive, consequently reducing the 

water levels of the wetland. Thus, not only does climate impact on the water levels directly 

through evaporation and precipitation, but it can also have indirect influences due to its 

effects on vegetation growth and performance, illustrating how plant cover can 

correspondingly influence HLR. 

Physical characteristics of the wetland can impact HLR. Seeger, E., M., (2013) found hydraulic 

flow was dependent on pond depth, the planting of plants and the position of the outlet. 

Water depth can influence HLR as altering the depth of the pond changes the volume of water 

within the pond. This then alters the flow rate (Q) providing the area of the pond (A) remains 

constant, which consequently impacts on the performance of the constructed wetland (Alley, 

B. L., et al., 2013).  

 

 

2.10.4.3 Impact of HLR on Constructed Wetland Performance 
 

Ingersoll, T. L., et al., (1998) studied the effects of HLR and carbon addition to nitrate removal 

and found that higher HLR meant decreased nitrate removal; however, a higher carbon 

addition meant higher nitrate removal. This would suggest that a lower flow and higher 

pollutant concentration would be a more efficient method of treating wastewater. This is 

confirmed by Dzakpasu, M., et al., (2014) who varied the input loading rates of Phosphorus to 

test the effect this would have on treatment performance. Li, X., et al., (2007) found that 

removal efficiency could be improved if HLR was increased but with a lower pollution 
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concentration, which is contradictory to both Dzakpasu’s and Ingersoll’s findings (Dzakpasu, 

M., et al., (2014); Ingersoll, T. L., et al., (1998)).  

In terms of pollutant concentration loading, Harrington, C. and Scholz, M., (2010) examined 

the effect of nutrient loading, hydraulic loading and effluent recycling on the treatment 

performance of anaerobically digested piggery wastewater. They tested the removal of total 

organic nitrogen, ammonia-nitrogen, nitrate-nitrogen, and MRP and found that both low and 

high hydraulic loading proved effective, which is also contradictory to Dzakpasu’s study, 

although higher rates did prove challenging for the removal of ammonia-nitrogen.  

Dong, Y., et al., (2011) found similar results to Harrington, C. and Scholz, M., (2010) with 

marginal differences in performance related to high and low HLR; however, it was indicated 

that this was possibly due to other external factors and it was concluded overall that at high 

HLR the effectiveness of the ICW is low due to a reduced retention time. This was then 

confirmed through later studies by Harrington, C., et al., (2012) on the performance of nutrient 

removal of separated swine wastewater (Table 2.6). 

 

Table 2.6 Effect of different nutrient loads and retention times on contaminant removal 

(Harrington, C., et al., (2012) Table 2). 

 

 

However, other studies have found that an increased HLR was effective for treating TSS and 

COD but not for N and P (Guo, Y., et al., (2014); Calheiros, C. S. C., et al., (2009)) suggesting that 

the effects of HLR could be specific to the type of contaminant being treated. Çakir, R., et al., 

(2015) tested the effects of HLR specifically on HSSF systems treating domestic wastewater 

from local communities and concluded that a reduced loading rate was statistically relatable to 
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higher treatment performance and suggested that these relationships be used for scaling 

purposes for future HSSF design. 

Studies have also implied that altering HLR by either flow rate or concentration could have 

impacts on the various organisms living within the wetland such as plants and organisms 

(Huddleston, G. M., et al., (2000); McCarthy, G., et al., (2011b)). McCarthy indicated that 

higher nutrient loading had different effects than higher flow rate on different micro-

organisms. Allen, C. R., et al., (2013) also found that different species of plants performed 

differently to the treatment of nitrogen when HLR and HRT was varied within a batch-loaded 

SSF wetland system. These findings from McCarthy and Allen would suggest that hydraulic 

loading can have various impacts on the treatment of wastewater depending on the 

characteristics of each particular site.  

 

2.10.4.4 Hydraulic Retention Time 
 

Hydraulic Retention Time (HRT) describes the length of time it takes for influent to pass 

through the wetland and discharge as effluent. Kadlec, R. and Wallace, S., (2008) define HRT as 

‘the wetland water volume involved in flow divided by the volumetric water flow’ as seen in 

the following equation: 

 

𝑡 = 𝑉𝑎𝑐𝑡𝑖𝑣𝑒 / 𝑄 

Where  𝑡 = detention time (d); 𝑉𝑎𝑐𝑡𝑖𝑣𝑒 = volume of wetland containing active flow (m3); 𝑄 

= flow rate (m3/d) 

 

Like HLR, HRT has been the focus of many studies relating to optimising the efficiency of 

constructed wetlands, yet unlike HLR, there seems to be a general consensus as to how HRT 

impacts on wetland performance with higher HRTs leading to overall better treatments. 

However, there appears to be a slight difference in opinion as to the importance of HRT in 

influencing such performance compared to other factors such as HLR. For example, as already 

noted, the study by Garcia, J., et al., (2005) found that the aspect ratio and granular medium 

size of a constructed wetland, which impact on HRT, contributed to the treatment 

performance, but were not as significant when compared to HLR and water depth. Harrington, 

R. and McInnes, R., (2009) also established that HLR is crucial for the efficiency of treatment of 
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an ICW, but that this was to allow for an adequate HRT in order to give the wetland the 

opportunity to undergo the appropriate treatment processes. 

 

2.10.4.5 Factors that Influence HRT 
 

HRT is sensitive to variations of a number of physical and environmental factors, including HLR 

itself. Thus, it could be agreed that factors that influence the HLR, will also have an indirect 

influence on HRT. In terms of physical factors for example, one feature which would have an 

indirect influence on HRT through HLR would be the surface area of the pond. In theory, a 

lower HLR means a higher HRT, however, if the footprint of the constructed wetland is high 

then HRT will be subsequently high meaning the impact of varying HLR on HRT would be 

marginal (Dong, Y., et al., 2011). If, however the surface area of the pond is small, altering HLR 

will have significant impacts on the HRT and have major influences on the performance of the 

wetland. Another factor that would influence HRT indirectly through altering HLR would be the 

depth of the wetland ponds. As previously mentioned, altering the depth of the pond, and 

subsequently the ponds volume (V), has an impact of the rate of flow (Q) and overall HRT 

which can have significant implications for the treatment performance of the wetland (Alley, B. 

L., et al., 2013). 

In terms of environmental factors, HRT is also affected by variations in climate, vegetation 

cover and soil composition like HLR. Pei, Y., et al., (2010) illustrated how different seasons had 

an impact on the wetlands ability to uptake moisture and nutrients from the wastewater. As a 

result, the HLR, and corresponding HRT, were influenced significantly having a subsequent 

impact on the overall performance on the wetlands ability to remove nitrates.  

Paudel, R., et al., (2013) on a large CW in the USA looked at modelling how variations of plant 

density could impact on HRT.  The results identified that higher vegetation density would result 

in lower HRT, which is agreeing with findings by Tuttolomondo, T., et al., (2015). However, 

Paudel, R., et al., (2013) illustrated how too high a vegetation density could result in a higher 

HRT which could lead to excessive water levels within the wetland becoming detrimental to 

plant performance and thus treatment efficiency. 

Another way in which HRT could be altered would be through the process of effluent recycling 

which involves taking the effluent from the outlet and allowing it to flow back into the inlet of 

the pond to be retreated. Effluent recycling has been found to substantially increase HRT 
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subsequently improving performance of wastewater treatment, especially with regards to 

Ammonia-Nitrate, MRP and Nitrates (Harrington, C., et al., 2012).  

 

2.10.4.6 Impact of HRT on Constructed Wetland Performance 
 

As with HLR, the sensitivity of HRT to external factors gives rise to a number of implications on 

the performance of constructed wetlands and the treatment of contaminated wastewater. 

Although it has been previously highlighted in chapter 2.10.4.5 that there is a general 

understanding within research that higher HRT leads to a better treatment efficiency of the 

wetland, there are studies that would suggest that there is a level at which this higher HRT 

peaks and then begins to become inefficient.  

For example, a study by Zhao, Z. et al., (2011) on HSSF wetlands found that HRT had significant 

effects on the removal of COD, TP and Nitrate nitrogen but not on ammonia and nitrite, 

showing how different HRT can impact on various contaminants within the same wetland. 

Other studies on FWS wetlands have found that a higher HRT also had a positive correlation 

with Phosphorus removal (Lu, S. Y., 2009) and TN (Garcia-Lledo, A., et al., 2011) showing 

similar positive results for different contaminants within the same type of wetland.  

A more recent study by Mirunalini, V., et al., (2014) found that higher retention times showed 

better treatment performance of BOD, COD, TSS, TDS, TN and TP for both dairy wastewater 

and domestic wastewater illustrating a positive correlation despite the contaminant and 

wastewater type (Table 2.7). Mirunalini also suggested that performance may peak at an even 

longer retention time; however, it was also reported by Headley, T. R., et al., (2005) and Ayaz, 

S. C., (2008) that a longer HRT may cause the inefficient removal of BOD. 
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Table 2.7 Percentage removal efficiency of dairy and domestic wastewater against retention 

time (Mirunalini, V., et al., 2014). 

 

 

Although the general outcome appears to vary slightly according to wetland type and the 

concentration/type of contaminants being treated, it can be concluded that there is a positive 

correlation between HRT and wetland performance, although there are exceptions to the rule. 

It would be fair to state that these exceptions would depend upon a number of peripheral 

issues such as the size and/or type of wetland under investigation, its climate, the external 

factors which contribute to its performance and the type and volume of wastewater that is 

being treated. 

 

 

2.10.5 Climatic Conditions 
 

There have been a number of studies conducted which relate the performance of constructed 

wetlands to seasonal and climatic variations. Performances of phosphorus, MRP, COD and BOD 

and trace elements have all been found to be reduced in autumn and winter compared to 

spring and summer in both ICWs and HSSF systems (Dzakpasu, M., et al., (2011; 2014); Dong, 

Y., et al., (2011); Burgoon, P., S., et al., (1999); Rai, U. N., et al., (2015)).   

The climate of the local area can have an impact on the performance of constructed wetlands 

in a number of ways. Factors such as temperature, wind and precipitation can all influence the 

hydraulics and performance of plants within the system, having indirect impacts on the overall 

performance. Precipitation and wind can have a major impact on the hydraulic processes 

within the wetland as factors such as flooding, drought and evaporation can influence the HLR 

and HRT of the wetland.  
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One study found that the discharge levels from an ICW was greatly reduced throughout 

summer months due to the increase in evaporation rates caused by associated higher 

temperatures (Forbes, E. G. A., et al., 2011). Temperature can also influence the hydraulics of 

the wetland by altering the rate of evaporation or transpiration by plants, having a subsequent 

impact on the transport of water through the hydrosoil where many biological and chemical 

treatment processes occur (Beebe, D. A., et al., 2014). Low removal efficiencies for BOD, COD 

and nitrogen in autumn and winter is said to be due to reduced microbial activities and lower 

nitrification/ denitrification rates caused by lower temperatures, while lower MRP and 

phosphorus removal could be due to the reduced plant uptake in colder temperatures (Dong, 

Y., et al., 2011). 

However, others have demonstrated that wetlands performed better at removing BOD in 

winter months and nitrates in summer months, suggesting that treatment performance may 

be subject to the contaminant involved (Gorra, R., et al., 2014).Temperature is also known to 

have an impact on the growth of different plant species within the wetland, and their ability to 

transfer oxygen required for treatment processes, again having an indirect impact on the 

overall performance (Stein, O. R. and Hook, P. B., 2005). 

Although a higher precipitation rate can be associated with lower performance due to 

increased flow and reduced retention times, one study on the treatment of wastewater 

containing heavy metals found that treatment performance was higher in spring when rainfall 

was higher. It was suggested that the increased precipitation may have caused a dilution effect 

and lixiviation (Grisey, E., et al., 2012). Another study found that seasonal variations in 

wetlands was dependent upon the plant species as some species perform better in summer 

and others in winter (Yang, Q., et al., 2007). However, it has been demonstrated that although 

planted systems perform better during warmer summer months, unplanted systems perform 

better throughout the winter months (Karathanasis, A. D., et al., 2003). This evidence would 

suggest that climate can influence wetlands in different ways, depending on the type of plants 

or contaminants involved, resulting in positive or negative impacts.  

 

2.10.6 Role and Type of Plants 
 

Plants are a major contributor to the performance of constructed wetlands due to their ability 

to influence hydraulic flow, provide habitat for microorganisms, absorb nutrients, and filter 

through sedimentation. This section illustrates the important role plants play in the treatment 
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process, and how the type of species can determine the effectiveness and efficiency of 

treatment of various contaminants. 

 

2.10.6.1 Role of Plants 
 

Brix, H., (1997) details how macrophytes play an important role in constructed treatment 

wetlands by contributing to the physical, chemical and biological processes involved in 

wastewater treatment, as well as providing an aesthetically pleasing addition to the landscape. 

Despite this evidence, further studies have continued to investigate the performance of 

planted and unplanted wetlands in treating a variety of wastewaters in order to establish if the 

presence of plants is crucial. Results have found that although both planted and unplanted 

systems were effective, planted systems were more effective in the removal of total 

phosphorus and total nitrogen, but not for organic removal (Yang, Q., et al., (2007); Elsaesser, 

D., et al., (2011)). Conversely, other studies have shown significant differences between 

planted and unplanted systems with planted obtaining a higher average removal rate than 

unplanted systems (Sultana, M., et al., (2015); Ranieri, E., et al., (2015) Türker, O.C., et al., 

(2016)).   

The short study period for the previous studies should be noted however as an earlier study 

found that plants were not as effective in storing nutrients as the wetland matures. Results of 

one particular study found that less than 1% of nitrogen and phosphorus had accumulated 

within the plants over a 7 year period compared to the 74% of phosphorus and 52% of 

nitrogen stored within the wetland soils (Mustafa, A., and Scholz, M., 2011). This study would 

suggest that the wetlands’ soils could be a more important factor in the long-term removal of 

contaminants from wastewater. 

Plants can also have an impact on the performance of constructed wetlands as their presence 

allows other organisms to develop and thrive which are crucial to the treatment of 

wastewater. Fester, et al., (2014) demonstrates the importance of plants and their interactions 

within the ecosystem, providing wastewater treatment through phytoremediation. The report 

illustrates how plants are not only effective in contaminant removal themselves, but that they 

also support numerous communities of micro-organisms which are vital for the treatment of 

organic contaminants. 
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2.10.6.2 Types of Plants 
 

Not only does the presence of vegetation play an important role in the performance of 

constructed wetlands, but the species type is also influential. Some species are more suited to 

particular types of wetlands, climatic conditions and wastewater contamination than others, 

and therefore, tend to perform better. Thus, it is important that the correct species is selected 

for the specific wetland being implemented. 

For example, studies have found that some species are more effective in the removal of 

nitrogen and phosphorus than others (Dong, X. and Reddy, G. B., 2010) which could be due to 

particular qualities such as having a fine root biomass (Yang, Q., et al., 2007), or having a 

greater the abundance of microbes, or rhizosphere enzyme activity, relevant to the nutrient 

removal processes within a constructed wetland (Ge, Y., et al., 2011). Contrary to this, Meng, 

P., et al., (2014) and Rai, U. N., et al., (2015) found that there was no real difference in 

phosphorus removal overall across a number of different plant species but that the 

performance of each species varied greatly species across the different seasons. These findings 

could be a result of differences in seasonal performance rates of plant species as described by 

Allen, W., C, et al., (2002). 

As there are differences in removal efficiency between species, it is important to select the 

appropriate species specific to the particular wetland from the design stage in order to 

optimise overall performance (Brisson, J. and Chazarenc, F., 2009). It is therefore 

recommended that plants should be selected on their BOD removal efficiency, growth rate, 

biomass production and the number of rhizobacterium present (Phewnil, O., et al., 2014), as 

well as their rate of evapotranspiration (Tuttolomondo, T., et al., 2015), their sensitivity to 

climatic conditions, and their ability to treat various contaminants (Taylor, C., R, 2009).  

 

2.10.7 Summary of Key Variables that Impact Treatment Performance 
 

Wetland design in terms of water depth, soil depth, soil composition, surface area, wetland 

shape, number of ponds and plant presence and species, all have an influence on the 

performance of both HSSF and ICW systems in treating wastewater, as well as the climatic 

conditions of the wetland location. These factors have shown to have an influential role in 

determining the hydraulics of the wetland flow, as well as impacting on the growth and 
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development of the various plant species. However, it can also be seen that each of these 

design principles have varying impacts on numerous types of wetland and wastewater. Thus, it 

is important that the appropriate design is selected for use in a specific wetland depending on 

the local climatic conditions and the type of wastewater being treated, to ensure that 

optimum results can be achieved. 

 

2.11 Key Factors that Determine Constructed Wetland Performance 
 

Despite constructed wetlands demonstrating a strong ability to effectively treat various types 

of wastewater, there are other issues which need to be considered in order to determine the 

overall performance of constructed wetlands. Factors such as land use, odour creation, social 

impacts, carbon footprint, economic performance, whole life costing, operation and 

maintenance and climate change mitigation, all contribute to the overall performance and 

value of constructed wetlands in various ways. 

 

2.11.1 Impacts of Land Usage 
 

As previously discussed in section 2.1, each wetland serves a different function and is capable 

of treating some contaminants and loadings better than others. As such, it is imperative that 

the design of the wetland used is effective and appropriate for these specific conditions. Thus, 

the surface area of the wetland is also specific to the type or level of treatment required 

and/or the physical and environmental conditions of the local area. As such, it is important to 

consider the amount of land available and its associated costs in order to determine which 

design of wetland would be most efficient, effective and sustainable.   

Lucas, R., et al., (2014) identified land use and land availability as main challenges in the 

implementation of constructed wetlands in the UK (Lucas, R., et al., 2014, cited in Chang, C., et 

al., 2015). It is not surprising therefore, that according to Kadlec, R., H, et al., (2009) the sizing 

of constructed wetlands is the most reported design feature between wetland types. Due to 

the differences in designs and objectives of various wetlands, the surface area of ICWs is much 

greater than HSSF systems. 
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It could be assumed therefore, that HSSF wetlands have an advantage of a smaller land 

requirement than ICW systems, and subsequently reduced capital costs, which would be a 

major contributor as to why HSSF systems tend to be more widely used. However, the high 

performance rate of ICWs in treating highly contaminated wastewater means that these 

systems may still remain the more appropriate option to implement, depending on the quality 

of water being treated and level of output expected. Thus, the reduced cost of using a smaller 

HSSF wetland in terms of economic land value, may bring unexpected costs of reduced 

effectiveness. Also, the economic savings of land value from HSSF may not outweigh the social 

and environmental gain that can be obtained from using the larger area of the ICW system in 

terms of biodiversity enrichment and leisure facilities. Thus, it is essential that the decision 

makers are fully aware of the true costs of land usage by constructed wetlands before 

embarking upon the design, construction and operational phases. 

Some innovations in the use of constructed wetlands for wastewater treatment have tried to 

reduce the amount of land required through the inclusion of artificial aeration or tidal flow 

operation which increase the oxygen capacity of the wetland and allow more effective 

treatment over a smaller area of land (Wu, S., et al., 2014). However, these methods come 

with a higher operation and maintenance cost compared to traditional constructed wetlands 

as shown in Figure 2.12 (Wu, S., et al., 2014). 

There are costs and benefits associated with the use of land to implement constructed 

wetlands; however, there have been various advances made to try and integrate such systems 

into the local area in the hope of reducing the adverse impacts associated with the land take of 

both HSSF and ICW systems. 
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Fig. 1 - Intensified constructed wetlands (a, artificial aerated CW modified with graphical components from Wallace and Knight 
(2006); b, drop aerated CW modified with graphical components from Wallace and Knight (2006) and from Zou et al., 2012; 
c, baffled flow CW modified with graphical components from Wallace and Knight (2006); d, step feeding CW modified with 
graphical components from Wallace and Knight (2006); e, hybrid towery CW modified from Ye and Li, 2009; f, circular flow 
corridor CW modified from Peng et al., 2012). 

 
 
Figure 2.12 Intensified constructed wetlands (Wu, S., et al., (2014)). 

 

Some methods of this involve integrating the wetland systems into urban areas to make use of 

disused space or brownfield sites, bringing a more sustainable approach to urban development 

(Junge-Berberovic, R. and Graber, A., 2004). The report by Junge-Berberovic and Graber (2004) 

also identifies how the use of constructed wetlands within urban areas can help enhance the 

local ecosystem and increase the biodiversity within the area whilst providing a sustainable 

alternative to wastewater treatment. 

Constructed wetlands have also been successfully implemented into urban residential areas 

where land availability is generally limited. For the wetlands to be fully integrated into such 

areas, they must be accepted by the local residents as part of their community. One 

particularly good example of this would be a small-scale study in China which investigated the 
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design of a fan-shaped HSSF wetland planted with ornamental aquatic plants which involved a 

land usage of just 0.5m2/pe, which coupled with the environmentally sensitive design gives rise 

to a very sustainable and viable approach (Zhao, X. et al., 2014). 

As well as being able to integrate constructed wetlands into the local surroundings, there have 

been cases where the implementation of the wetland has enhanced and enriched the 

neighbouring area, improving not only the aesthetic landscape, but also providing an area for 

local wildlife to flourish. One example of this is reported by Kalin, M. (2011) who looked at the 

use of constructed wetlands to aid in the restoration of post-mining landscapes.  

Another example as to how constructed wetlands could be used effectively to enhance the 

local area would be the Vallevecchia Wetland System in Northern Italy where 900ha of 

reclaimed wetlands were used to treat non-point pollution from agricultural activities. The 

wastewater is recycled through the system where it is then used for irrigation purposes during 

droughts or dry spells, as well as reducing the high nutrient load discharging into the Adriatic 

Sea which already has a problem with eutrophication (Carrer, G., M. et al., 2011). Again, this 

illustrates how wetlands can be reclaimed and rejuvenated to be used for treatment 

processes, providing a solution to on-going wastewater problems, whilst also contributing to 

the local environment and wildlife.  

Semeraro, T., et al., (2015) demonstrated that constructed wetlands were capable of much 

more than the treatment of wastewater, providing the additional benefits of sustaining and 

enhancing wildlife biodiversity, on a global scale, as well as creating a potential area for 

educational and leisure opportunities. Thus, although it may seem that the large land 

requirement is a highly limiting factor in the implementation of constructed wetlands, ICWs 

are based on the design principles of integrating the wetland system holistically into the local 

landscape, using available geology, topography and ecology to construct an area which has 

purpose, robustness and sustainability.  

Consequently, the reduction of land requirement is not of particular concern, with some 

studies finding additional benefits to increasing land take rather than limiting it. Beccerra-

Jurado, G. et al., (2011) found that increasing the land usage from the ICW to 5 ponds or more 

would encourage wildlife into the area and improve biodiversity whilst also potentially being 

used as a leisure site for recreational or educational activities.  

Overall, it can be seen that there are advantages and disadvantages to land use by constructed 

wetlands. HSSF systems require a smaller land take than ICWs but are typically less fitting with 
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the local landscape; however, new design approaches have improved their appearance and 

allowed for a more aesthetic implementation to urban areas. The larger land requirement of 

ICWs gives rise to a higher capital cost in the construction and development of the system, 

then again, the associated benefits of being wholly integrated into the local environment 

whilst providing an amenity suitable for educational and leisure activities may be deemed to 

be more valuable.  

Also, although the land requirement for ICWs is high, the construction of this type of system 

can still be as much as half the price of a traditional WwTW and is capable of treating as much 

as 3 times more wastewater (Doody, D. et al., 2009). Thus, despite differences between 

wetland systems, there is reason enough to implement even the costliest of constructed 

wetland designs, as it is still much more sustainable than current industry practices. 

 

2.11.2 Effects of Odour 
 

It would be fair to assume that the use of constructed wetlands for wastewater treatment 

would give rise to an increase in odour in the surrounding area. However, very little research 

has been conducted to test odour levels associated with constructed wetlands, with only a few 

studies being concerned with the reduction of substances which have the potential to create 

odour (Ju, X., et al., (2014); Kadlec, R., H., et al., (1997); Lv, X. and Ruan, X., (2011)). It would 

therefore appear from the literature that odour development is not deemed to be of major 

concern in the enhancement of constructed wetlands. It is noted that the literature reviewed 

does not make reference to the impacts of odour caused by ICWs treating domestic sewage so 

ICWs cannot be disregarded as having no issues with odour and further studies would be 

recommended. 

 

2.11.3 Social Considerations 
 

Constructed wetlands are known for being environmentally-sensitive alternatives to traditional 

wastewater treatment works. However, in order for them to be truly sustainable, they must 

also be socially and economically viable.  

ICWs are based on the principle that they must be environmentally, socially and economically 

acceptable, so issues of social impact are considered to be critical to the overall performance 
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(Harrington, R. and McInnes, R., 2009). The ICW at Glaslough for example was implemented 

with equestrian and walking trails to allow for more tourist based activities, which also 

complimented the tourist attractions of the local Castle Leslie Estate (Doody, D., et al., 2009). 

As a result, ICWs are normally well received by the local society as their environmentally 

sensitive design allows them to enhance biodiversity whilst permitting recreational and 

educational activities (Becerra-Jurado, G., et al., 2011). 

This would be especially beneficial for urban areas, where the availability of green space for 

leisure is greatly limited. Constructed wetlands add valuable services such as air filtering, noise 

reduction and recreational values in urban areas, which would not normally exist (Junge-

Berberovic, R. and Graber, A., 2004). 

Although it can be assumed that these added benefits would deem constructed wetlands as 

more socially acceptable, it is important to consider the actual thoughts and perceptions of the 

communities in these areas. One study on the social acceptance of ICWs was completed based 

on the Annesvalley project in Ireland. This study involved conducting a survey on people from 

farming, government, business, councils and other perspectives. Results showed that 

respondents found ICWs to be a social resource, bringing benefits such as amenity areas, 

educational facilities and enhanced landscape (Everard, M., et al., 2012).  

Thus, it can be concluded, that societies are more open to the idea of constructed wetlands for 

the treatment of wastewater; however, it must be noted that a lack of knowledge and 

understanding of the social, environmental and economic benefits that these systems provide, 

could result in communities becoming hostile to their implementation. 

 

2.11.4 Influence of Carbon Footprint 
 

There is little research available on the performance of constructed wetlands in the 

sequestration or emission of greenhouse gases (GHG); however, natural wetlands are well 

known to be effective in the capture of GHGs such as CO2. This is because wetlands are capable 

of sequestering carbon through high organic matter inputs and low rates of decomposition, 

allowing organic carbon to accumulate within the soils, and the presence of phragmites allows 

them to act as effective sinks of carbon and nitrogen through photosynthetic fixation 

(Harrington, R. and McInnes, R., (2009); Scholz, M. and Lee, B., (2005)). 
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When compared to traditional wastewater treatment works, constructed wetlands release 

around seven times less GHG emissions such as CO2, CH4 and N2O (Pan, T., et al., 2011). 

Conversely, a study on GHG emissions from a constructed wetland treating sewage in Sweden 

found that plants within the constructed wetland had high respiration rates and allowed for 

increased emissions N2O and CH4, increasing GHG emissions by 71.4 tonnes of CO2 equivalent 

per year (Strom, L., et al., 2007). Another study claims that constructed wetlands can emit 2-10 

times more GHGs than a similar sized natural wetland (Maltais-Landry, G., et al., 2009).  

Thus, although wetlands can indeed sequester and absorb CO2, CH4 and N2O from the 

atmosphere and wastewater and use it as part of the treatment process, the subsequent GHGs 

that are released should also be considered. Subsequently, there are some potentially adverse 

effects of constructed and restored wetlands that must be considered; the GHG emissions 

could potentially diminish the environmental benefits of constructed wetlands as the 

contribution to overall carbon footprint may be greater than what they are capable of 

sequestering (Maltais-Landry, G., et al., (2009); O'Geen, A.T., et al., (2010)). 

De Klein, J. and  Van der Werf, A., (2014), Barbera, A. C., et al., (2014; 2015), Niu, C., et al., 

(2015), Jahangir, M., et al., (2016), and Zhao, Z., et al., (2016)  have all demonstrated that the 

ability of constructed wetlands to sequester and/or emit GHGs is determined by the seasonal 

growing rate, species of vegetation which is planted  and the type of media and wetland 

design. These studies showed clear differences between planted and unplanted systems, as 

well as plant species on the level of GHG emissions throughout the investigation period and 

found that although there were slight variations between results, overall GHG emissions were 

positively correlated with seasonal temperature changes. 

Jahangir, M., et al., (2016) also demonstrated differences in wetland type, with horizontal, 

vertical, surface flow and subsurface flow systems contributing differently to GHG 

sequestration and emission. Others have suggested that GHG emissions are determined by the 

type and concentration of wastewater entering the system, with positive correlations between 

organic loading and CH4 emissions identified (Corbella, C. and Puigagut, J., 2015). This would 

suggest that the performance of constructed wetlands in relation to GHG sequestering is 

subjective to the design and climatic variations associated with wetland plant performance. 

In order to determine the performance of ICW’s with regards to carbon footprint, it is 

necessary to identify how much carbon they are capable of retaining within their systems. 
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Once this information is acquired, it will be possible to evaluate the true contribution of ICWs 

in carbon reduction, and the subsequent values that this will convey. 

 

2.11.5 Economics & Whole Life Costing 
 

There has been little research conducted on the economic and whole life costing of either 

HSSF or ICW systems. However, it has been demonstrated that these systems are less 

expensive than traditional wastewater treatment works in terms of construction and 

operational costs and have even been suggested for use in developing countries due to their 

minimal energy, operation and maintenance requirements (Denny, P., (1997); Collins, A. R., 

and Gillies, N., (2014); Dimuro, J. L., et al., (2014); Vergeles, Y., et al., (2015); Wu, H., et al., 

(2015)).  

One example where ICW’s have been proven to provide a more economically viable and 

maintenance/labour efficient alternative to traditional wastewater treatment works (WwTW) 

would be the construction of a 1750pe constructed wetland in Glaslough which cost around 

€770,000, compared to €1.53m for a 650pe WwTW nearby (Doody, D. et al., 2009). The 

maintenance and operational costs of an ICW are also minimal as the system itself requires 

little to no energy in comparison to that of a traditional WwTW. In 2014, energy usage in 

Northern Ireland for all of the traditional WwTW processes and Water Treatment Plants cost 

around £33.4million (NIW, 2014b); hence energy efficiency reduction is an essential 

sustainability requirement. However, in terms of agricultural activities, one study on the 

economic analyses of pig manure treatment options in Ireland found that constructed 

wetlands were not as cost effective as land spreading, unless the farm was of large scale 

(Nolan, T., et al., 2012). 

Other studies on the economics and whole life costing of constructed wetlands are generally 

based on increasing the cost efficiency of the wetlands themselves. One study investigated the 

cost-benefit analysis of operating an ICW treating pre-digested piggery waste at various flow 

rates found that there was no additional benefit to increasing rates, although this may be 

different at a large-scale system (Harrington, C. and Scholz, M., 2010).  Although it can be 

assumed that constructed wetlands are more economically efficient than traditional 

wastewater treatment works, the lack of evidence would suggest that further research is 
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required to fully address the issues of whole life costing for constructed wetlands, especially in 

relation to the treatment of domestic waste. 

 

2.11.6 Operational and Maintenance Requirements 
 

HSSF and ICW systems require minimal operational requirements when compared to 

traditional wastewater treatment works, due to their natural design concepts and their ability 

to work without the need for artificial technology (US EPA, (1988); Zhang, D. Q., et al., (2014); 

Vergeles, Y., et al., (2015)); however, HSSF systems generally require more maintenance and 

operational energy costs than ICWs, as ICWs are designed to be as independent as possible 

(Ellis, J. B., 2003). 

One of the biggest concerns with regards to the maintenance of constructed wetlands is the 

accumulation of organic matter over time. This accumulation of organic matter effectively 

determines the lifespan of the constructed wetlands, as once the surface of the ponds rises to 

meet the level of the embankment, the pond will no longer be effective in capturing and 

retaining the wastewater. Therefore, it is important that the accumulated matter is maintained 

at an appropriate level so as the lifespan of the wetland is increased. 

It is expected that this level will not be reached within ICWs for around 50-100 years, however 

if the accumulated matter is removed regularly, the lifespan of the wetland will continue 

indefinitely (Carty, A., et al., (2008); Scholz, M., et al., (2007)). HSSF systems on the other hand 

are more susceptible to clogging from suspended solids if adequate removal does not occur at 

the settlement ponds (Vymazal, J., 2011); subsequently, it is expected that accumulated 

matter should be excavated between 10-15 years to ensure the lifespan does not diminish 

(Ellis, J. B., 2003). 

Overall it is demonstrated that operational and maintenance requirements for both systems 

are comparatively lower than traditional wastewater treatment works. Studies are becoming 

more concerned with improving the operation and maintenance of constructed wetlands with 

many new techniques and designs being tested (Liu, R., et al., (2015); Wu, H., et al., (2015); 

Zhang, L., et al., (2015)). However, there is still little information available on accurate 

operational and maintenance costs for constructed wetlands treating domestic wastewater. 
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2.11.7 Climate Change Mitigation Potential 
 

A further attribute that constructed wetlands have is their climate change mitigation potential. 

Their ability to withstand shock loads from flooding and cope well under seasonal variations, 

indicates that they have the potential to remain robust under the influences of climate change 

variations; however, they also bring many other benefits which aid in the reduction of the 

causes and effects of climate change as discussed below. 

Constructed wetlands are capable of sequestering carbon, a major contributor to GHG 

emissions and climate change, through a number of physical and chemical processes which 

occur within the wetland structure (Harrington, R., and McInnes, R., (2009); Scholz, M., and 

Lee, B., (2005)). They have also been shown to release far less GHG emissions than traditional 

wastewater treatment works (Pan, T., et al., 2011).  

Constructed wetlands can also be used effectively to mitigate the impacts of climate change 

through flood alleviation. Wetlands have repeatedly demonstrated their ability to hold and 

retain water for long periods of time, even under shock loadings and flooding (Jenkins, G., A., 

et al., 2012). This characteristic highlights how constructed wetlands can be used as a potential 

flood control measure, to ease the loading of high precipitation levels on nearby water courses 

and groundwater stores. 

The Vallevecchia Wetland System in Northern Italy demonstrates this attribute very well; the 

system was capable of retaining water during flood periods, which was then treated and used 

for irrigation purposes during droughts or dry spells (Carrer, G., M. et al., 2011). Again, this 

illustrates how wetlands can be used to mitigate the impacts of flooding during high 

precipitation periods, as well as the impacts of drought.  

Constructed wetlands require very little operation and maintenance, and as such, their energy 

consumption is minimal when compared to traditional wastewater treatment works (Zhang, D. 

Q., et al., (2014); Vergeles, Y., et al., (2015)). By using constructed wetlands as an alternative 

wastewater treatment method, less energy is required, giving the subsequent benefits of 

reduced fuel consumption, less emissions and reduced overall carbon footprint.  
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2.11.8 Summary of Appraisal Factors 
 

Overall, it can be seen that constructed wetlands provide a number of attributes which can aid 

in their overall performance appraisal. However, it must be noted that there is limited research 

dedicated to evaluating these key issues. The performance of constructed wetlands should not 

be limited to their ability to treat wastewater but should consider the other contributions they 

provide as discussed. Thus, it is recommended that further research is conducted on these key 

performance indicators for constructed wetlands, so that a more thorough appraisal of their 

performance can be conducted. 

 

2.12 Current Guidance for CW in Northern Ireland 
 

Although there are many design guides available on the development of constructed wetlands 

the Guidance Document for Farmyard Soiled Water and Domestic Wastewater Applications 

(Carty, A., et al., 2008) is the only guidance relevant to Integrated Constructed Wetlands.  It 

was published by the DEHLG in the Republic of Ireland in 2010 and has since been adopted for 

the construction of ICWs in Northern Ireland. The guidance was developed for the treatment 

of farm yard soiled water and domestic wastewater. It aims to provide a ‘practical framework 

for good practice in the design, site selection, construction, and maintenance of ICWs’ for 

‘practitioners in the field of waste water treatment, planners, policy makers and other 

interested parties in both public and private sectors’ (DEHLG, 2010) 

The guidance does not define what is meant by farm yard soiled water and domestic 

wastewater and both are very different in terms of properties and sources. The requirements 

of a farmer are different to those of a large-scale sewage treatment provider. The guidance 

was based on work in Southern Ireland, although no reference to locations is offered, and 

claims that ICWs have the potential to deliver a substantial range of ecosystem services, 

including flood attenuation, amenity and recreation. They can integrate the sustainable 

management of land, water and biological resources consistent with the ecosystem approach, 

to promote conservation and enhance biodiversity. Despite these claims relatively little 

research on the use of ICWs in terms of ecosystem services, flood attenuation, amenity and 

recreation has been done. Rather these potential benefits are based on research on generic 

wetlands development. The need of a separate design guide giving specific consideration to 

the requirements of a town is obvious. 
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The guidance document is divided into 7 chapters. Chapter 1 explains the background to the 

concept and processes surrounding constructed wetland development and outlines each of 

the steps and decisions involved in design, installation and monitoring. The introduction 

highlights the importance of using a sustainable method of wastewater treatment such as 

constructed wetlands. The design guide claims to be based on experiences from about 60 ICWs 

however it gives no reference to these.  

Chapter 2 considers site assessment to determine the suitability of an ICW so that time and 

expense is not wasted. It considers whether the ICW can be developed safely in terms of 

construction and environmental impacts, providing baseline information for regulators, 

designers, and contractors. Key issues addressing social, ecological and economic 

considerations are given.  

Chapter 3 details the process of undertaking a site assessment i.e. desk study and collation of 

supporting information; visual assessment; characterisation of wastewater; evaluation of 

receptor sensitivity and location; site tests (trial hole, soil characteristics and particle size 

analysis); decision process and preparation of recommendations. Example templates and 

information are used to explain each of these tasks.  

Chapter 4 considers the need of an ICW to conform to statutory and regulatory requirements, 

national legislation, regulations and that full planning permission and discharge licencing is 

required. However, the guidance document dates from 2010 and much of the requirements 

are outdated. For example, the objectives of the Water Framework Directive (2015).  

Chapter 5 considers the basic concept of an ICW and its design. It states that the design must 

be a ‘deliberate attempt to implement a holistic approach to natural resource management 

within the context of achieving sustainable development’ (DEHLG, 2010). However, the 

supporting evidence is limited for treating domestic sewage.  

Chapter 6 reiterates the main aspects of previous chapters and states that the design will be 

site specific. Chapter 7 outlines the processes and considerations involved in the operation, 

maintenance and monitoring of the ICW once the construction phase is complete.  

Based on this critical review of current guidance in NI, the following points are made: 

 The design guide is outdated. 
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 A guidance document based on both agricultural and domestic wastewater is not 

appropriate to the effective treatment of domestic sewage. 

 Research is required to determine what changes are required for treatment of 

domestic sewage. 

 

2.13 Critical Review of Literature 
 

In summary, it has been demonstrated that wetland design in terms of water depth, soil depth, 

soil composition, surface area, wetland shape and number of ponds, all have an influence on 

the performance of both HSSF and ICW systems. Each of these design principles have varying 

impacts on either of these wetlands. For example, water depth can be more influential to the 

performance of ICWs than HSSF wetlands, due to their sensitivity to hydraulic flow. HSSF 

systems on the other hand require a greater soil depth to allow for adequate treatment 

processes. Thus, it can be concluded that despite differences between the two types of 

wetland, the design principles are highly influential to their performance and should be 

considered in the development process. 

The hydraulic interactions within constructed wetlands are, without any doubt, significantly 

influential to the overall performance and efficiency of the treatment processes. Having 

adequate HLR and HRT are fundamental factors in ensuring the appropriate quality of effluent 

is reached at the outlet of the wetland system; however, there are differences in opinion as to 

what can be defined as ‘adequate’. HLR should be high enough to allow the wastewater to 

flow through the system, yet low enough that it does not simply pass through too quickly for 

the wetland to treat. HRT must be high to ensure the wetland has enough opportunity to go 

through the treatment process, however, it must not go above the peak level where it begins 

to become inefficient in treating certain contaminants. 

There is a significant impact of hydraulics on the performance and efficiency of constructed 

wetlands. The level of significance on each of the HLR and HRT depends greatly on various 

other contributing factors as discussed. It can be recommended therefore that these factors 

are considered when designing the constructed wetland to ensure that optimum performance 

is reached for the specific type and volume of wastewater being treated. 

However, there are still differences in opinion as to the extent that HLR impacts on 

performance, the importance of HLR in relation to other contributing factors (such as hydraulic 
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retention time), and how HLR should be altered to optimise the performance of the wetland to 

enhance treatment efficiency. 

Plants play a crucial role in influencing the performance of constructed wetlands for 

wastewater treatment due to their phytoremediation mechanisms (Figure 2.13). Not only do 

vegetated systems prove to be more robust and effective than non-vegetated systems, but 

differences in species within the same wetlands can also cause various results. Therefore, it is 

important that the appropriate species is selected for use in a specific wetland depending on 

their ability to cope with different types of wastewaters under various climatic conditions. 

 

Figure 2.13 Phytoremediation mechanisms within wetland plants (Parmar, S. and Singh, V., 

2015) 
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The performance of constructed wetlands can be appraised on factors other than their ability 

to treat wastewater. Secondary issues such as land use, odour, social impact, carbon footprint, 

economic value, operation & maintenance costs and climate change mitigation potential, each 

all contribute to the overall value of constructed wetlands. However, there is limited research 

available on these issues resulting in a lack of understanding of the true contributions of 

constructed wetlands.  

In conclusion, this review has considered relevant literature relating to Constructed Wetlands, 

in particular ICW and HSSF systems. The following areas of research have been identified: 

 Wetland design, location and climatic conditions influence the performance of both 

HSSF and ICW systems. However, each factor has varying impact. An appropriate 

design must be used in a specific wetland to ensure that optimum results can be 

achieved. Research into the hydraulic and environmental design principles of 

Stoneyford ICW is required. 

 Both HSSF and ICW systems are able to treat various types of contaminants. However, 

there are contradictions in the literature relating to how they perform under shock 

loadings, seasonal variations and wetland maturity. Research into these factors is 

required at Stoneyford ICW. 

 HLR and HRT are fundamental factors. However there are differences in the literature 

relating to optimum performance. Research is required for Stoneyford ICW. 

 Drones are now being used for applications that were previously considered difficult or 

impossible. Their use should be evaluated to determine what new types of information 

can be derived from Stoneyford ICW. 

 A lack of appropriate guidance documents within the UK and Ireland has also been 

identified, with none relating to the specific use of ICWs for domestic wastewater 

alone. Thus, it is recommended that further research is carried out to develop the 

background knowledge and understanding required for an appropriate guidance 

document for integrated constructed wetlands treating domestic wastewater in 

Northern Ireland. 
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CHAPTER 3. STONEYFORD ICW AND 
TEST RIG DEVELOPMENT 
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3.1 Introduction 
 

This chapter describes development of Stoneyford ICW from site selection, the planning 

process, construction, commissioning through to operation and maintenance. It helps to 

illustrate the processes involved in development of an ICW. This chapter also considers the 

design, construction and operation of the small-scale Test Rig that allowed the smaller scale 

research investigations detailed in this thesis. 

 

3.2 Background to the Stoneyford ICW Development 
 

Stoneyford ICW was commissioned by Northern Ireland Water (NIW) to replace an existing 

Waste Water Treatment Works (WwTW) that had been servicing the village of Stoneyford 

since 1980. The ICW was designed by VESI Environmental and built by BSG Civil Engineering. 

The Stoneyford WwTW had been originally sized for 331 PE. It was upgraded in 2001 to allow 

for inlet screening and aeration facilities increasing its capacity to 695 PE. Due to the growth of 

Stoneyford village the WwTW became overloaded increasing operational and maintenance 

costs. 

It became apparent to NIW that the existing WwTW system would need to be replaced by a 

larger works. However, stricter NIEA water quality standards meant that more complex and 

expensive treatment processes would have to be incorporated with the new facilities costing 

an estimated £1.4 million. This was substantially higher than the estimated capital cost to 

construct an ICW at Stoneyford at approximately £800,000, excluding maintenance and NIEA 

licensing. 

This prompted consideration of an ICW as an alternative method to treat wastewater at 

Stoneyford similar to the ICW systems being pioneered by the National Parks and Wildlife 

Service, Department of Environment, Heritage and Local Government at sites across Southern 

Ireland. Visits were made to sites such as Glaslough by NIW. Following a NIW consultation with 

stakeholders and an economic appraisal it was proposed that an ICW at Stoneyford was the 

preferred solution.  
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An ICW at Stoneyford would provide improved wastewater treatment for the existing 

population and future development of the village as well as creating an aesthetically pleasing 

area that is rich in biodiversity with recreational potential.  

Both NIEA and the NIW regulator agreed that the Stoneyford ICW should act as the first full-

scale trial in Northern Ireland for a period of at least 5 years to determine whether it was a 

viable solution for upgrading other WwTWs in Northern Ireland. The full-scale trial could be 

benchmarked against similar sized WwTWs by NIW with similar consent standards to establish 

an appraisal between key measures such as capital costs, compliance with consent conditions 

(quality and volumetric conditions), operating costs including labour, power, materials, sludge 

treatment and disposal, environmental issues, and reliability (breakdowns, loss of process, call-

outs).  

 

The following timeline provides a brief summary of the stages involved in the Stoneyford ICW 

and test rig. 

 

1. NIW Stakeholder liaison August 2013; 

2. Public information events held by NIW from August 2013 to June 2014; 

3. Planning application submitted by NIW in August 2013; 

4. Planning permission granted to NIW in April 2014; 

5. Construction starts April 2014; 

6. Planting of ponds from July 2014 to September 2014; 

7. Diversion of existing flows of domestic waste to ICW in November 2014; 

8. Site completion by February 2015; 

9. Agreed justification and design for Test Rig March 2015; 

10. Construction of Test Rig commenced August 2015; 

11. Test Rig planted (7 of 8 beds) January 2016; 

12. Test Rig completed July 2016. 
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3.3 Stoneyford ICW Site Selection 
 

Site selection for Stoneyford ICW had to comply with the same guidelines for selection of a 

traditional WwTW site, including those of NIW Environmental Management System (EMS) and 

Planning Service Designations. If these guidelines are met an ICW can be built almost 

anywhere using the existing landscape to shape the land surface and seal the basin to retain 

the water. However, due to the holistic approach of ICWs to enhance the natural landscape 

and biodiversity, some sites are better suited than others with a good site containing the 

following: 

• convenient location to the wastewater source, 

• good local infrastructure and access, 

• adequate area and land availability, 

• level or gently sloping land, 

• heavy soils with low permeability, 

• not in an area of high flood risk/flood plain,  

• no issue with environmental sensitivity, 

• rural area preferred to mitigate potential impacts of odour. 

 

 

A potential site was selected to the north east of Stoneyford village. A site investigation was 

required to determine the soil permeability at the required depth, groundwater level, aquifer 

classification, groundwater vulnerability and groundwater response matrix. The designers 

employed by NIW were VESI Environmental. They had to consider effluent quality and 

quantity, location, landscape, geology, hydrology, soils and economics.  

Factors such as influent composition, hydraulic retention time, and site characteristics are 

fundamental in calculating the area and form of the ICW. Initial investigations identified an 

area north east of Stoneyford as a suitable site for the construction and operation of an ICW as 

the ground was generally sloping with adequate area necessary for the development and 

construction process. The suitability of the site was then further assessed through more 

investigative site visits and desk studies and results concluded that the site was suitable for the 

construction and operation of an ICW. Figure 3.1 shows the proposed Stoneyford ICW site 

before construction. 
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Figure 3.1 Stoneyford site before construction. 

 

3.4 Stoneyford ICW Planning and Design 
 

The treatment system was designed by VESI Environmental and consultation with Dr. Rory 

Harrington to treat domestic wastewater for a capacity in excess of 950 PE and consists of 2 

settlement ponds, 5 treatment ponds, a control building, site access road, boundary planting 

and landscaping, and monitoring equipment such as samplers and flow meters. 

The ICW pond surface area was determined using the DEHLG 2010 design guide 

recommendation that the area should be between 20m2 – 40m2 per population equivalent 

(Carty, A., et al., 2008). To ensure the sustainability of the ICW in terms of future development 

in Stoneyford village, the wetland area for the site was designed to provide treatment for a PE 

of up to 950, with an overall area of approximately 38,000m2.  

The approximate area of the wetland site is 8 hectares, allowing for access roads, car parking 

and landscaped areas. Details of each pond and their corresponding areas are shown in Table 

3.1. 

  



84 
 

Table 3.1 Individual pond areas of Stoneyford ICW. 

Pond number Pond area 

Pond 1 7,476 m
2
 

Pond 2 8, 301 m
2
 

Pond 3 8,939 m
2
 

Pond 4 5,874m
2
 

Pond 5 6,479m
2
 

Settlement Pond A (SPA) 300 m² 

Settlement Pond B (SPB) 240 m² 

 

Figure 3.2 shows the proposed layout for Stoneyford ICW located just to the east of Stoneyford 

village. This shows the ICW site located beside the Stoneyford River. The effluent is pumped to 

the two sludge ponds located to the east. The effluent then flows sequentially through the 

series of 5 treatment ponds before being discharged into the river to the west. The proposed 

layout also shows access roads and walkways around the ponds. Two settlement ponds were 

proposed so they could be alternated to allow for desludging without interrupting the 

treatment process as seen at Glaslough (Dong, Y., et al., 2011) 

The operational water depth of each treatment pond is between 150mm - 200mm, with a 

maximum depth of 300mm. The pond embankments are sloped with a gradient of 1:1.5 - 1:2 

and the upper embankments are a minimum of 3m wide to allow for access and maintenance. 

The ponds are connected using 150mm diameter pipes which are placed on the wetland floor. 

Water levels can be managed within each pond using adjustable weirs which are placed on the 

outlet pipe of each pond.  

The original design included purpose built concrete weirs to control the water level within 

each pond. This included automatic data recording of wastewater flow rate at the outlet of 

each pond using a SCADA flow monitoring system. An automatic sampler was positioned on 

the weir to obtain wastewater samples for routine analysis. 
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Figure 3.2  Proposed Stoneyford ICW layout drawing (derived from drawing by BSG Civil 

Engineering). 
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3.5 Construction and Planting of Stoneyford ICW 
 

The construction of Stoneyford ICW started in April 2014. The main construction works 

involved 9 stages. Figure 3.1 shows the ICW site before construction. Figure 3.3 shows the site 

at Stage 5 with some water lying in the floor of each pond. 

• Stage 1: Stripping of topsoil from site and retained for later use; 

• Stage 2: Excavation of sub-soil and creation of temporary embankments; 

• Stage 3: Layering and compaction of soil to create a base for each pond; 

• Stage 4: Creation of embankments; 

• Stage 5: Re-distribution of top-soil over the base of each pond for planting as shown in 

Figure 3.3; 

• Stage 6: Pipe laying and ducting between ponds; 

• Stage 7: Placement of stones/chippings beneath inlet and outlet pipes to prevent 

erosion; 

• Stage 8: Planting each pond with emergent vegetation as shown in Figure 3.4; 

• Stage 9: Ponds allowed to flood to design water depth as shown in Figure 3.5. 

 

 

Figure 3.3 Stages 1 – 5 Developing the pond layout. 
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Figure 3.4 Pond 1 planted with emergent vegetation July 2014. 

 

 

Figure 3.5 Flooded ICW. 

 



88 
 

A Control Building was constructed beside the car park south west of the ICW. This included 

the Stoneyford ICW weather station. Figure 3.6 shows some of the weather measurement 

equipment attached to the Control Building. Weather data was display and recorded within 

the Control Building continually on a 30 day loop.  

 

 

Figure 3.6 Stoneyford ICW weather station on Control Building. 

 

Continuous flow monitoring of the influent and effluent was proposed in the original design 

using automatic flow monitoring equipment. Flow monitoring took place within the specifically 

designed chambers as shown in Figure 3.7. The concrete chambers for all ponds were created 

using pre-cast sections so they were all of the same dimensions. The monitoring equipment 

recorded daily flow rate at the inlet and final outlet of the ICW with average rates noted. The 

flow rates were also recorded within the Control Building. 
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Figure 3.7 Concrete Flow Chamber between ponds. 

 

Due to the proximity of Stoneyford River, risk mitigation measures were in place throughout 

construction of the ICW to limit the potential impact on adjacent surface water and 

groundwater environments. The following measures helped to ensure that there were no 

adverse impacts on groundwater caused by infiltration: 

• Shallow water depths within each pond (<300mm); 

• Low hydraulic pressure; 

• The presence of organic matter in the soil; 

• Compaction of soils to form a soil liner with a low permeability (>1x10-8m/s). (SIC) 
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Table 3.2  Main species planted in Stoneyford ICW (VESI, 2014). 

Botanical 
name 

Common 
name 

Flowering 
period 

Max 
height 
(m) 

Max 
water 
depth 
(mm) 

Summer 
Picture 

Winter 
Picture 

Glyceria 
maxima 

Reed sweet 
grass 

Jun – Aug 2.5 600 

  
Carex  

riparia 

Common 
sedge 

May – Jun 1.5  300 

  
Typha  

latifolia 

Reed mace Jun – Aug 2.5 100-
800 

 

  
Iris 
pseudacorus 

Yellow flag 
iris 

May – Jun 1 200 

 

Deciduous 

Not visible in 
winter 

Typha 
angustafolia 

Small reed 
mace 

Jun - Jul 3 150 
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Planting involved emergent species within each wetland pond and tree species along the 

embankments of the site. The original surrounding trees had to be removed to prevent 

shading and penetration of roots into the ICW. The ponds were planted with approximately 

60,000 emergent wetland species similar to those used at Glaslough (Dong, Y., et al., (2011; 

2012); Kayranli, M., et al., (2009)). The plant species planted at Stoneyford as recommended 

by VESI are shown in Table 3.2. This shows the expected height of each plant species and the 

recommended water depth in which it should be planted. Images of what each of the plant 

species look like in summer and winter are also shown.  

In order to keep within the objectives of an ICW the development should enhance the existing 

habitat and biodiversity value of the site. The Stoneyford ICW site was landscaped to maximise 

the potential for wildlife habitat creation and enhancement. Landscaping including planting of 

willow trees for use as a possible renewable energy source as seen in Figure 3.8. 

 

 

Figure 3.8 Planting of willow for landscaping. 

 

During the construction phase a number of issues arose which impacted progression of the 

development and site works. 

• Poor weather conditions – prolonged spells of wet weather during the construction 

phase made on site conditions unfavourable for site works causing delays in 

completion. 
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• Late planting of ponds – as a result of the poor weather conditions and delayed 

construction of the ponds, the planting began in July which was occurred later than 

proposed, giving plants little time to establish themselves before winter months 

approached. 

• Cattle in ponds – cattle from nearby fields entered the site during the construction 

phase after breaking through temporary fencing and walked through the unflooded 

ponds (Figure 3.9). 

• Vandalism – vandalism on site caused damage to the automatic samplers and fencing. 

As a result, the automatic samplers were not used and weekly manual samples (grab 

samples) were taken instead. 

 

 

Figure 3.9 Cattle on site after breaking through temporary fencing. 

 

The proposed finish date for Stoneyford ICW was February 2015. After dealing with these 

issues the construction was completed and commissioned with first water quality testing 

beginning in December 2015.  
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3.6 Stoneyford ICW Operation and Maintenance 
 

Integrated constructed wetlands are designed to be as self-maintaining and as self-

operable as possible. However, an operation and maintenance plan had to be developed by 

NIW to ensure adequate procedures were implemented on an on-going basis. The 

proposed main maintenance procedures have been listed below for the ICW at Stoneyford: 

 

• Water level management and flow maintenance; 

• Flow monitoring to and from the wetland; 

• Monitoring surface water quality; 

• Monitoring of receiving surface water quality; 

• Vegetation monitoring; 

• Maintenance of access; 

• Maintenance of inlet and outlet pipes; 

• Maintenance of embankments; 

• Sediment/sludge management; 

• Tree maintenance. 

 

Sludge removal is not carried out on a continuous basis for an ICW. Instead the sludge is 

allowed to accumulate in the sludge ponds for a number of years until it has to be removed. 

The sludge should then be caked sufficiently to be removed via lorry where it is likely that NIW 

would dispose of this sludge at the Duncrue incineration site. 

A visual inspection of the water levels in each pond was proposed weekly to ensure that water 

depths are no greater than 300mm and are maintained at approximately 200mm. A visual 

inspection of the sloping embankments on either side of the pond (internal and external) is 

required to check for any sign of leakage, slippage or distortion. Any defects noted should be 

recorded and necessary action undertaken immediately. All inlet and outlet pipes within the 

ICW system should be visually inspected for blockages, sediment accumulation, vegetation 

growth around the pipe and debris.  

The main growing season is during spring and summer with some plants starting to die back in 

autumn. Some species are semi-evergreen whereby the level of dieback will depend on the 

winter while evergreen plants will brown slightly and reduce in height during the winter. Any 

differences in the composition or cover of the plants should be noted and recorded weekly.  
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The general appearance of the receiving waters (Stoneyford River) should be noted, paying 

particular attention to water colour and for any excess foaming where the pipe from the ICW 

enters the river.  The temperature and pH of the influent and final effluent was proposed to be 

monitored weekly.  

It was proposed in the initial design that a sample of the influent into the ICW, the outlet of all 

treatment ponds and the final effluent from Pond 5 should be taken monthly and analysed for 

the following parameters: conductivity, BOD, COD, suspended solids, total nitrogen, nitrates, 

total phosphorus, total coliforms, faecal coliforms (E. Coli), nitrites, ammonia, sulphate, 

phenols, oils, fats, greases, and metals. The sampling was to occur using an automatic sampler 

which would be collected by a site operator and taken to the NIW laboratory at Altnagelvin. 

This was later modified to sampling at all of these locations once per week. 

The Stoneyford River should also be sampled at the ICW discharge point quarterly to monitor 

the following parameters: pH, dissolved oxygen, BOD, total nitrogen, ammonia, colour, and 

odour. 

Over the design life of the ICW there would be expected to be an accumulation of sediment. 

This would be confined initially to the sludge ponds. It is expected that as the ICW develops 

sediment may accumulate within the 5 main ponds. If deemed to be a problem, the depth of 

sediment should be investigated before removal to ensure that the compacted soil layer 

beneath the sediment is not disturbed. Ideally the material that lies 100mm above the soil 

layer base of the ICW should be undisturbed. 

The proposed design specified that rough cut grass areas should be maintained to achieve an 

even cover of longer vegetation and to control weeds. This would prevent contamination of 

the planted pond species. 

 
3.7 Test Rig Planning and Design 
 

The small-scale Test Rig (TR) consists of 8 test beds. Seven test beds are based on the design 

principles of an ICW and one bed designed on the principles of a Horizontal Sub-Surface Flow 

constructed wetland (HSSF). The 7 ICW test beds allowed for the study of the effects of varying 

influent volume similar to the research investigations carried out by Harrington, C., and Scholz, 

M., (2011). The HSSF allowed comparison with the ICW. 
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Consultation with NIW concluded that the best position for the TR would be within the 

boundaries of Pond 1. This would allow for adequate area for construction of the TR and 

gravitational inlet flow from the sludge ponds. This would not disrupt treatment of the rest of 

the ICW as the outlet from the TR test beds would flow into Pond 1 to continue with treatment 

as normal. This also ensured that the original ICW boundaries remained and no additional land 

take was required. There would be minimal impact on the existing landscape and biodiversity.  

The design for the Test Rig is based on principles of being able to test 3 different surface areas 

per person equivalent (SA/pe) of 20m2, 30m2 and 40m2 against various water depths (Dw) 

between 50mm and 250mm. Previous studies had suggested that the plant beds should be 

constructed at a Width: Length ratio (W:L) of 1:2 to gain optimum hydraulic retention and 

influent mixing (Carty, A., et al., (2008); Scholz, M., et al., (2007)). To test the effect of surface 

area (SA) and Dw on retention time the W:L ratio for each of the test beds should remain 

constant and sized accordingly. 

The DEHLG design guide (Carty, A., et al., 2008) states that the surface area of an ICW should 

be between 20m2 – 40m2 for one person. In order to test the proposed design SA of 20-40m2 

per person equivalent it was important that there was a test bed to represent each of the sizes 

20m2/pe, 30m2/pe and 40m2/pe. The scaling of each test bed was increased to a SA of 2pe 

giving the test beds SAs of 40m2, 60m2 and 80m2. The W: L ratio was maintained at 1:2. The 

dimensions of each test bed are shown in Table 3.3.  

 

Table 3.3 Test Rig Test Bed dimensions. 

Test Bed Type Test Bed 

Number 

Surface Area Test Bed Width Test Bed 

Length 

ICW 1, 7 40m2 4.475m 8.95m 

2, 6 60m2 5.47m 10.95m 

3, 4, 5 80m2 6.32m 12.65m 

HSSF 8 10m2 2.24m 4.47m 

 

The design for the HSSF Test Bed is based on a simple 1 pond system at the recommended 

surface area of 5m2/pe (Vymazal, J., 2005). In order to have the same scaling factor as the ICW 

Test Ponds of 2pe to allow for appropriate comparison to be made, the total surface area of 
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the HSSF is 10m2. The W: L ratio is also recommended at 1:2 giving the HSSF dimensions of 

2.24m x 4.47m. 

The proposed design drawing of the TR layout is shown in Figure 3.10. The influent from the 

sludge ponds is divided equally across all test beds using a 10 way splitter chamber (Figure 

3.11). Chamber 3 to 10 allows each of the 8 test beds to gain equal flow and volumes of 

wastewater. Chambers 1 and 2 were bypassed directly into Pond 1. 

The rate of influent flowing into the ICW is dependent upon the rate of usage within the local 

community and cannot be altered within a live treatment system. After consultation with NIW 

and CAST members, it was decided that the volume of the test beds would be varied by way of 

a combination of surface area (SA) and water depth (Dw).  

Varying the depth of soil (Ds) in the test bed was considered. However, as it would not be 

practical to alter the soil depth of an ICW, it was decided that the soil depth would remain 

constant at approximately 200mm to be representative of the full-scale treatment system. The 

proposed depth of the 7 Test Rig ICW beds is a total of 600mm which allowed for 200mm soil 

depth for planting and up to 300mm water depth for testing, with a 100mm surplus to prevent 

overflow.  

The water depth of T8 HSSF bed was varied by altering the level of the outlet pipe. The 

different levels of Dw investigated in the HSSF bed can be seen in Table 3.4. The total depth of 

T8 was 500mm. The soil: gravel ratio was 300mm: 200mm which allows adequate depths of 

soil for plant rooting as well as enough gravel depth to prevent clogging.  

Table 3.4 Test Rig HSSF water levels. 

Water Depth (mm) Soil/Gravel Depth (mm) Difference of water level 
from soil surface (mm) 

300 500 -200 
400 500 -100 
500 500 0 
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Figure 3.10 Proposed TR Layout within Pond 1 (Drawing by BSG Civil Engineering). 
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Figure 3.11 The 10 Way Splitter Chamber (Drawing by BSG Civil Engineering). 

 

The small-scale Test Rig was constructed in Pond 1 of the ICW. The vegetation was removed 

and a bund formed. Soil was imported and levelled to form a platform (Figures 3.12). The test 

beds were dug into this soil platform and lined with timber and plastic (Figure 3.13). The 10-

way concrete splitter chamber (Figure 3.11) was positioned and connected to the original inlet 

into Pond 1. Piping for each test bed was installed and checked for leakages (Figure 3.14). 

Crushed rock was used to create access paths around each of the beds for sampling and 

monitoring. 
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Figure 3.12 Importing of soil to create a platform for the TR construction. 

 

 

Figure 3.13 Construction of timber framed Test Beds. 
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Figure 3.14 Checking the TR for leakages and flow. 

 

The test beds were filled to the required depth with soil from the ICW site. Although gravel 

was in the proposed design crushed rock was used to fill the HSSF test bed due to availability 

(Figure 3.15). All 8 test beds were planted with Glyceria maxima (Figure 3.16 and 3.17). 

Glyceria maxima was planted to allow for faster establishment of the test beds so testing could 

begin sooner (Harrington, C., et al., 2011). 

A concrete flagstone was placed below the inlet pipes of each test bed to prevent de-

sedimentation. Wastewater flow from sludge pond A/B was then re-diverted to the splitter 

chamber to be distributed evenly amongst each of the test beds. 
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Figure 3.15 Filling of HSSF with crushed rock. 

 

 

Figure 3.16 Planting of TR after construction. 
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Figure 3.17 TR Completed and ready for testing. 

 

Similar risk mitigation measures were put in place throughout construction of the TR to limit 

impact on adjacent surface water and groundwater environments. A number of issues 

occurred during construction of the TR. Prolonged spells of wet weather caused delays. There 

were problems with unscreened wastewater entering the TR. This caused blockages and debris 

build up within the splitter chamber and test beds (Figure 3.18). 

The proposed finish date for the Stoneyford TR was August 2015. After dealing with the ICW 

issues, construction of the TR commenced in August 2015 and ongoing delays meant the TR 

was not completed and commissioned until July 2016 with first sample testing beginning in 

August 2016. 

The Test Rig was designed to be as self-maintaining and as self-operable as possible. The 

operation and maintenance plan for the full-scale ICW was modified for the small-scale TR. 

This covered the following: 

 

• Water level management and flow maintenance. 

• Flow monitoring to and from each test bed. 

• Monitoring water quality of the influent and effluent of each test bed. 



103 
 

• Monitoring of splitter chamber and cleaning of debris build up. 

• Vegetation monitoring within each test bed. 

• Maintenance of access around each test bed. 

• Maintenance of inlet and outlet pipes. 

• Maintenance of embankments and fencing. 

 

 

  

Figure 3.18 Debris within splitter chamber causing uneven flow. 
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CHAPTER 4.  METHODS 
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4.1 Introduction 
 

This chapter details the methods used in this thesis. The methods used to conduct a 

stakeholder engagement. The methods used collect data from the full-scale Stoneyford ICW 

and the small-scale test rig are detailed. Methods used to monitor vegetation within the ICW 

using a DJI Phantom 4 Drone are discussed. 

 

4.2 Stakeholder Engagement Methods 
 

Research has shown that incorporating stakeholder engagement into the process of data 

collection and knowledge development provides mutual benefits for both academic 

researchers and the non-academic utilisers of the information (Phillipson, J., et al., 2012). It has 

also been demonstrated that engaging stakeholders allows for the better adaption of the 

project to meet the needs of those who are most likely to put the research into practice (Reed, 

M.S., et al., 2014). 

Stakeholder engagement allows the attitudes, opinions or perceptions towards an issue to be 

developed through free and open discussions between members of the group (Kumar, R., 

2014). There may be downsides that some people may be uncomfortable in a group setting 

and too nervous to speak. Not everyone may contribute or others may influence an 

individual’s views. Advantages of being able to receive a wide range of responses in one 

meeting where members can ask questions of each other were deemed to outweigh the 

disadvantages in relation to the overall objectives of this research (Dawson, C., 2009).  

The Stoneyford ICW stakeholder engagement took the form of a focus group with a similar aim 

of Everard, M, et al., (2012) to ask structured questions to experts from a wide spectrum, 

including industry, contractors, environmentalists, engineers, academics, consultants, and 

planning advisors. Unlike Everard, M., et al., (2012) who conducted individual interviews, the 

Stoneyford meeting was designed to allow for open discussions and dialogue between key 

professionals. 

Selection of the Stoneyford ICW stakeholders was based on their ability to contribute 

professional and honest knowledge and opinions on the issues surrounding constructed 

wetlands using a life cycle approach so a whole life understanding could be represented.  
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The engagement consisted of 11 stakeholders (2 academics, 2 representatives from NIW, 5 

consultants, 1 Rivers Agency representative and 1 contractor). It took place at Ulster University 

in November 2015 for 3 hours. A PowerPoint presentation by the author gave a background to 

the joint research with NIW and a basic introduction to ICWs. 

A week before the stakeholder engagement the invited stakeholders were sent a ‘Stakeholder 

Engagement Brief: Integrated Constructed Wetlands’ as shown within the Stakeholder 

Engagement Feedback Booklet in Appendix A. This provided them with a summary of the 

concept behind constructed wetlands and gave the aim and objectives of the engagement 

meeting. It also allowed stakeholders to prepare and identify any thoughts or queries that they 

felt could be addressed during the engagement. 

At the start of the stakeholder engagement they were presented with a Feedback Booklet (see 

Appendix A) which contained a copy of the brief they had previously received and a list of open 

questions to gain their attitudes and opinions. The questions were designed to achieve 7 

objectives: 

 

Objective 1: Develop an understanding of the attitudes and opinions of key stakeholders on 

ICWs as an alternative to traditional wastewater treatment works; 

Objective 2: Identify how the use of ICWs as a wastewater treatment method is perceived by 

stakeholders from various backgrounds; 

Objective 3: Develop a perception of how stakeholders relate ICWs to current EU policy 

frameworks and sustainable development objectives; 

Objective 4: Identify key variables that impact on ICW performance and establish a weighting 

of significance; 

Objective 5: Identify key appraisal contexts of ICW installations and establish a weighting of 

significance; 

Objective 6: Develop an understanding of how stakeholders envisage future ICW application; 

Objective 7: Gain an understanding of stakeholder attitudes towards an ICW Best Practice 

Guidance Document. 
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The objectives, their subsequent discussion points and the appropriate question for each of 

the objectives have been summarised in Table 4.1. 

 

Table 4.1 Stakeholder Engagement discussion points and questions. 

Objective Discussion Point Question / Feedback Points 

1 Knowledge of ICWs and their 
relevance to and context within Policy 
Frameworks and Sustainable 
Development Objectives 

Please detail your current 
knowledge of ICWs, including 
their relevance to and context 
within Policy Frameworks and 
Sustainable Development 
Objectives 

2 

3 

4a 
Identification of the listed variables 
which are deemed to be significant to 
influencing overall ICW performance 

Based on your previous 
knowledge and today’s 
presentation can you identify 
the key variables which impact 
overall ICW performance? 

4b 
Weighting of the listed variables in 
order of significance to influencing 
performance 

Can you now weight the 
agreed variables in order of 
significance to influencing 
performance using the pyramid 
below? 

5a 
Identification of appraisal contexts 
deemed to be significant in the 
performance evaluation of ICWs 

Based on your previous 
knowledge and today’s 
presentation can you identify 
the key performance criteria 
for overall ICW appraisal? 

5b 
Weighting of the listed variables in 
order of priority for further study 

Can you now weight the 
agreed criteria in order of 
significance to overall ICW 
performance appraisal? 

6 
Opinions on the future of ICWs in 
terms of implementation and 
additional/alternative applications 

What is your opinion on the 
future of ICWs in terms of 
implementation and 
additional/alternative 
applications? 

7 

Opinions and comments for an ICW 
‘Best Practice’ Design Guide to 
develop an applied document 
applicable to various industries and 
applications 

What are your opinions on an 
ICW Best Practice Design Guide 
to develop a document 
applicable to various industries 
and applications; What key 
elements should be included 
within the document? 
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Figure 4.1 Pyramid of Significance template. 

 

For the questions relating to weighting the variables and performance criteria, stakeholders 

were asked to use the pyramid template shown in Figure 4.1. The pyramid was divided into the 

3 Levels of Significance as defined within the Feedback Booklet depending on the impact each 

factor had on the performance of ICWs. Once the stakeholders had voiced their opinions and 

weighted the factors they were then shown the Pyramids of Significance shown in Figures 4.2 

and 4.3. 

These Pyramids of Significance are based on a review of 375 articles related to constructed 

wetlands as listed within the References and Bibliography. Figure 4.4 shows the number of 

reviewed references relating to key issues that impact performance. Figure 4.5 relates to the 

number of references related to key factors that determine wetland performance. 
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Figure 4.2  Pyramid of Significance Key Variables based on literature. 

 

Figure 4.3 Pyramid of Significance Appraisal Contexts based on literature. 
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Figure 4.4 Number of references relating to key Issues. 

 

Figure 4.5 Number of references relating to appraisal contexts. 

 

0 50 100 150 200 250 300

Hydraulic Loading

Land Usage

Pollutant Removal

Role / Type of Plants

Odour

Soil

Temperature / Climate

Social Impact

Pond Geometry

Number of References

0 50 100 150 200 250 300

Carbon Footprint

Economic Performance

Land Use & Population Loading

Pollutant Removal

Operation & Maintenance
Optimisation

Whole Life Costing

Ecology

Climate Change Mitigation Potential

Number of References



111 
 

This part of the knowledge exchange was left until after the stakeholders had written and 

discussed their weighting of variables and contexts based on their own knowledge and 

understanding. This was to ensure that stakeholders’ comments were based completely on 

their own perceptions and opinions and remained uninfluenced by what they may have 

believed from known literature studies and experience. This allowed the stakeholder 

engagement session to remain the exchange of knowledge between key professionals and 

provide qualitative data. 

The final section of the feedback booklet allowed the stakeholders to record their opinions and 

comments of the stakeholder engagement process. The session was audio recorded so that an 

accurate account of the discussions could be documented. A transcript was then typed up 

which could be combined with the written record of stakeholder comments from the Feedback 

Book to aid the production of anonymised analysis of the quantitative data similar to Everard, 

M., et al., (2012). 

 

4.3 Stoneyford ICW Data Collection 
 

A manual sample (commonly known as a grab sample) from the inlet and outlet of each of the 

5 full-scale ICW treatment ponds was taken on a weekly basis by NIW in accordance with their 

sampling guidelines. Weekly intervals were chosen as this is a common sampling procedure for 

similar studies on ICWs (Dong, Y., et al., (2011; 2012); Kayranli, M., et al., (2009)). The samples 

were transported to the NIW laboratory in Altnagelvin. They were tested for BOD, COD, Total 

Suspended Solids and Ammonium using standard NIW operating procedures which were not 

available at time of writing.  

The NIW laboratory procedures are UKAS Accredited and ISO17025 Certified. Analysis of the 

grab samples was made available by NIW for a 19 month period from January 2016 to July 

2017. The Stoneyford ICW weather station continuously monitored air temperature, 

precipitation, wind speed, wind direction and humidity. This was supplemented with weather 

data recorded at the nearby Aldergrove Airport from the MetOffice archives. 
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4.4 Small Scale Test Rig Data Collection 
 

Manual flow rates were taken at the inlet and outlet of each of the 8 test beds at weekly 

intervals from August 2016 to April 2017. Figure 4.6 shows flow rate being measured using a 2 

litre measuring container. Wastewater level was recorded using the gauge fixed to the inside 

of each the test bed as seen in Figure 4.7. 

 

Figure 4.6 Manual flow samples taken at outlet of ponds. 

 

Figure 4.7 Depth gauge fixed to inside of Test Bed 6. 
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A manual grab sample from the outlet of each of the 8 test beds was taken on a weekly basis 

by NIW in accordance with their sampling guidelines. The samples were transported to the 

NIW laboratory in Altnagelvin. They were tested for BOD, COD, Total Suspended Solids, Total 

Nitrogen, Total Phosphorus, Ammonium, pH and E-Coli, using standard NIW operating 

procedures. The NIW laboratory procedures were UKAS Accredited and ISO17025 Certified. 

Sampling data was made available by NIW for a 9 month period from August 2016 to July 

2017. Plant growth in each of the test beds was monitored visually. 

 

4.5 Methods Used for the Drone Study 
 

A drone was used for vegetation based investigations of the 5 ICW ponds during 4 site visits in 

December 2016, and February, April and July 2017. The drone used was a DJI Phantom 4 

(Figure 4.8). This provided photographic and 4k video images for analysis. The DJI Phantom 4 

could record video in Intelligent Flight Mode which allowed it to fly along a prearranged flight 

path using waypoints. During 4K video recording the drone was flown at an altitude of 10 – 

15m with the camera facing directly towards the ground. 

 

 

Figure 4.8 DJI Phantom 4 Drone (Martin, J., 2016). 
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The still images collected for vegetation analysis were taken from an altitude of 120m which 

allowed for the whole pond to be captured in a single image. A video survey of a single pond 

took approximately 10-15 minutes. Individual images of each pond took approximately 5 

minutes.  

Image Pro 9.3.1 was used to analyse single images of each pond. 3DF Zephyr Aerial Educational 

Version 3.301 was used to analyse the 4K video to reconstruct 3D models of each pond. Full 

step by step guides were developed for each method (Appendices B and C). 

The following is a summary of the single image analysis method used to evaluate pond 

vegetation growth. Google Earth Pro was used to scale each pond (Figure 4.9). A pond image 

was opened in Image Pro 9.3.1 and calibrated using this Google Earth Pro data (Figure 4.10). 

The pond area from the edge of the water surface was selected as the region of interest (ROI) 

as shown in Figure 4.11. Using the Threshold tool, individual areas of interest (AOI) 

representing surface water, green vegetation and brown vegetation were selected and their 

areas determined (Figures 4.12 – 4.14). 

 

 

Figure 4.9 Pond Calibration Distances using Google Earth Pro. 
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Figure 4.10 Pond 1 December 2016 calibration. Control distance highlighted. 

 

 

Figure 4.11 Pond 1 December 2016 Region of Interest (ROI) highlighted. 
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Figure 4.12 Pond 1 December 2016 surface water area threshold selection. 

 

Figure 4.13 Pond 1 December 2016 green vegetation area threshold selection. 
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Figure 4.14 Pond 1 December 2016 brown vegetation area threshold selection. 

 

The following is a summary of the 4K video image analysis method developed to create 3D 

models of each pond to evaluate vegetation growth using 3DF Zephyr Aerial software. The 3D 

modelling process involves 5 stages i.e. image extraction, sparse point cloud generation, dense 

point cloud generation, mesh extraction and textured mesh generation.  

The software first extracts single images (Figure 4.15) from the 4K video. These are used to 

generate a 3D model using the steps detailed in Appendix C. Default software settings were 

used. The 3D model was scaled using waypoint information obtained from a site survey using a 

total station (Figure 4.16). 
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Figure 4.15 Extraction of single images from 4K video file. 

 

Figure 4.16 Topcon Total Station and Tripod located at the outlet of Pond 1. 
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Figures 4.17 – 4.21 show example 3D models for each of the 5 ponds. The blue triangles are 

the single images extracted from the 4K video and show the drone flightpath. The red dots in 

the 3D model are the waypoint control points. The green lines show the measured distance in 

metres between control points measured using the total station capable of sub-centimetre 

accuracy. 

 

Figure 4.17 3D model for Pond 1 and Test Rig. 

 

Figure 4.18 3D model for Pond 2. 
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Figure 4.19 3D model for Pond 3. 

 

 

Figure 4.20 3D model for Pond 4. 
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Figure 4.21 3D model for Pond 5. 
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CHAPTER 5. RESULTS 
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5.1 Introduction 

 

This chapter will describe and analyse the results of the studies described in Chapter 3. The 

outcomes of the stakeholder engagement will be discussed. The findings from the full scale ICW 

and Test Rig will be detailed and analysed on the performance indicators of water quality. The 

data obtained from the drone study will be reviewed and analysed with regards to their 

application to monitoring plant performance of an ICW. 

 

5.2 Results and Discussion of Stakeholder Engagement 

 

This section will describe and analyse the overall responses given by the stakeholders for each 

of the discussion points relating to the 7 objectives listed in Table 4.1. Few of the stakeholders 

wrote their thoughts into each of the sections within the Feedback Booklet. The audio 

recording allowed further detail to be documented based on the discussions.  

 

Please detail your current knowledge of ICWs, including their relevance to and context within 

Policy Frameworks and Sustainable Development Objectives: 

 

This discussion point relates to Objectives 1-3 as listed in Table 4.1. At the beginning of the 

session stakeholders were asked to introduce themselves and give a brief account of their 

background and any previous knowledge they had of ICWs. From this it was clear that the 

stakeholders had limited previous knowledge of either the concept of or the processes 

involved in integrated constructed wetlands. They were keen to gain a better understanding. 

After the PowerPoint presentation stakeholders asked questions with regard to this research 

project with NIW including the type of wastewater being treated, methods of measurement 

and monitoring, and existing or similar projects in the UK and Ireland. 

These questions were all related to the processes involved and developments of the research 

project itself. This indicated that the stakeholders had obtained enough knowledge and 

understanding during the PowerPoint presentation of the concept and processes involved in 

the development of constructed wetlands for wastewater treatment. They were now in a 
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position to provide relevant comments to discuss variables that impact on performance and 

appropriate appraisal methods.  

Discussions considered the risks involved in developing an open system for the treatment of 

sewage. Stakeholders were concerned with Health and Safety regulations and the risks 

involved with allowing public access to a sewage treatment works. Issues included the 

exposure to pathogens, as well as the environmental risks that may be incurred should the 

system leak or overflow into nearby water courses and habitats. 

With regards to the Water Framework Directive (2000/60/EC), stakeholders did not make any 

comment of their current knowledge. The topic of sustainable development provided a wider 

discussion with subjects stemming from each of the three pillars of sustainable development 

i.e. social, environmental, and economic (Brundtland Report, 1987). 

Issues surrounding planning regulations and development constraints associated with 

sustainable development generated considerable discussion particularly with regards to land 

use and treatment capacities. Others raised issues on how the development of ICWs would 

impact on the local social and environmental communities again referring to health and safety 

concerns on both human populations and wildlife habitats. How the ICW would cope with 

extreme weather events such as flooding was discussed. This highlighted the need for rigorous 

assurance from NIW that there will be no significantly adverse implications incurred by society 

or the environment as a consequence of ICW implementation. 

These discussions demonstrate that there is a lack of understanding on the overall 

performance of ICWs for wastewater treatment and that their success is determined by much 

more than their ability to clean wastewater. Thus, in order to fully evaluate the performance of 

ICWs, it is important to first identify the contexts in which their performance can be appraised 

and weight them appropriately. 

 

Based on your previous knowledge and today’s presentation can you identify the key 

variables which impact overall ICW performance? 

 

This discussion point relates to Objective 4a as listed in Table 4.1. Stakeholders were asked to 

identify variables that would have an impact on ICW treatment performance. The variables 
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identified by the stakeholders were grouped according to the findings from the literature 

review as illustrated in Table 5.1. 

 

Table 5.1 Identified variables and grouping. 

Variables identified by Stakeholders Variable Group from Literature 

Area; Soil Capacity/Volume; Water Depth; 

Wetland Geometry. 

Design 

Influent Quality; Hydraulic Flow; Water 

Balance (evaporation/filtration). 

Hydraulics 

Seasonal Variations; Extreme Events; 

Evaporation; Precipitation; Transpiration 

Climate and Climate Change 

Plant species; Plant Performance; Plant 

Growth; Plant Life/Sustainability 

Vegetation 

Site Selection; Site Topography; Local 

Hydrology  

Planning 

Maintenance Operation and Maintenance 

 

The variables that impact performance identified by stakeholders can be categorised into four 

main categories recognised by literature; Design, Hydraulics, Climate, and Vegetation. 

Interestingly, the stakeholders identified a number of additional variables which could impact 

the performance of ICWs as seen in Variable Groups ‘Planning’ and ‘Operation and 

Maintenance’. This evidence confirms that the key variables that impact ICW performance had 

been identified within the literature. Evidence also illustrates that there are other variables 

which had not been identified, highlighting the limitations of available research in relating ICW 

performance to key stakeholder requirements. In order to achieve the main aim of the 

research project to provide knowledge and understanding to stakeholders, it must meet the 

needs and desires of those stakeholders, and not just address gaps in academic research. This 

discussion point within the stakeholder engagement session highlighted the importance of 

gaining stakeholder views.  
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Can you now weight the agreed variables in order of significance to influencing performance 

using the pyramid below? 

 

This discussion point relates to Objective 4b as listed in Table 4.1.The stakeholders were asked 

to weight the variables in order of significance using the Pyramid of Significance Template 

shown in Figure 4.1. Results from the discussion indicate that the most significant variable 

would be the sewage quality being treated. The quality and volume of the sewage is the 

problem which needs to be solved, therefore the performance of all other variables is relative 

to the level of performance required, or capacity of the variables to treat the particular 

influent. 

The second most prominent variable that stakeholders deemed to be significant in impacting 

performance were those held within the Planning variable group. This can be justified by 

understanding that planning limits what can be designed and built. If there were no planning 

constraints clients would be able to build an ICW at whatever size and design they required to 

treat wastewaters. However an ICW must be constructed within particular planning margins, 

thus limiting the design capacity of the wetland and impacting on subsequent performance. 

Another way in which planning impacts on the performance of wetlands treating wastewater is 

that the design must be sustainable for future use. Issues such as population growth and 

climate change will need to be considered in the original designs and planning procedures to 

ensure the system will be as effective as a wastewater treatment facility in the future as it is 

now, without the need for expanding or adding further treatment techniques. 

The third variable group that was deemed to be of significance in ICW performance was that of 

Design, specifically in relation to surface area and wetland geometry. The design must be 

sustainable for future generations and have adequate surface area to be able to cope with the 

likely increase in loading caused by population growth. The design must also be accurate and 

appropriate to the application of domestic wastewater whilst still remaining considerate of 

social, economic and environmental implications. Thus, designing the constructed wetlands’ 

size and shape will have significant impact on its wastewater treatment performance as it will 

influence the volume and application of treatment capacity.  

The fourth significant variable was that of hydraulics. Stakeholders discussed how issues of 

hydraulic retention and hydraulic load were probably highly significant in impacting 

performance, but that external issues surrounding climatic and vegetative growth patterns 
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meant that control over hydraulic variables may be limited. Hydraulic retention time and 

loading are probably strongly influenced by the design of the wetland through surface area, 

water depth, geometry, soil composition, vegetation species and plant density. However, 

climatic changes can cause alterations in the water balance either directly through evaporation 

or precipitation, or indirectly through transpiration and plant uptake. Despite hydraulics being 

considered to influence ICW performance, issues with external conditions mean that even the 

most accurate hydraulic designs may be subject to unexpected performance in service. 

The fifth variable was plants and soil. Again, it was discussed that these variables, despite 

having significant contribution to the treatment performance of constructed wetlands, are 

greatly influenced by external climatic conditions beyond human control. It was agreed that 

despite having appropriate types and volumes of vegetation and soil, changes in climate and 

weather can produce unexpected performance in service.  

Operation and Maintenance was not deemed to be of significant influence. Maintenance 

would either help maintain performance levels of other variables of design, hydraulics, and 

planning or have a slight to moderate adverse impact if not maintained. It would not directly 

influence the overall wastewater treatment performance. 

The variable group which was deemed to be of least significance was that of climate and 

climate change. Despite being considered as having a substantial impact on other variables the 

climate may not directly influence the ability of ICWs to treat wastewater. It was also noted 

that climatic conditions are not controllable or manageable variables and should therefore be 

considered only as an impact on the performance of other variables, and not as a direct 

variable itself. 

Once discussions had finished and stakeholders were satisfied that they had appropriately 

weighted the identified variables, they were shown the Pyramid of Significance based on 

literature as shown in Figure 4.2. 

The Pyramid of Significance illustrates that the most significant variable identified by literature 

is that of sewage quality (influent quality), followed by plant (vegetation), soil and surface 

area. Hydraulic variables and other issues of design were secondary, with climate and effluent 

quality (required standards) being those which are deemed to be considered least significant. 

From the results of the discussions at the stakeholder session, a similar pyramid based on their 

views and knowledge was drawn up as seen in Figure 5.1. 
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Figure 5.1  Pyramid of Significance Key Variables based on Stakeholder Engagement. 

 

The Stakeholder Engagement Pyramid of Significance is similar to the Pyramid of Significance 

derived from the literature review (Figure 4.2). Influent Quality was the top priority and Pond 

Surface Area being classed as significant; Hydraulics, Pond Depth and Pond Number classed as 

important; and Climate and Effluent being classed as contributors.  

Figure 5.1 has the addition of Planning within the significant section. Plant and Soil has been 

reduced to the Important level.  Operation and Maintenance has been added to the important 

level. 
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The stakeholder engagement session agreed in general with information gathered from the 

literature review. However, it is now apparent that literature may have failed to adequately 

consider design, operation and maintenance of an ICW. For example, the theoretical 90 day 

retention time or the surface area per person equivalent. The impact of wastewater load as it 

flows through the ICW ponds. The migration of weeds or dominance of planted species within 

the ponds. 

 

Based on your previous knowledge and today’s presentation can you identify the key 

performance criteria for overall ICW appraisal? 

 

This discussion point relates to Objective 5a as shown in Table 4.1. This formed the second 

stage of the stakeholder engagement and discussed the various ways in which ICW 

performance could be appraised in addition to wastewater treatment. The stakeholders 

identified a number of appraisal contexts which are grouped to allow for literature comparison 

and shown in Table 5.2. 

The appraisal contexts identified by the stakeholders can be grouped into the 6 main contexts 

identified by literature. The stakeholder engagement identified additional appraisal contexts 

related to Pollutant Removal; Land Use, Economics, Operation and Maintenance, Ecology, 

Social Impact, Carbon Footprint, and Climate Change Mitigation. Stakeholders identified 4 

additional groups which had not been considered by literature; Planning, Health and Safety, 

Political Consideration, and Social Perception. 

Literature had partially considered how an ICW had impacted the local community. However, 

it had not fully considered how the community views an ICW as a method of treating domestic 

wastewater. The stakeholder engagement highlighted numerous ways in which ICW 

performance could be evaluated and highlighted that literature has not fully considered all of 

the contexts that are considered important to these key stakeholders. 
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Table 5.2 Identified Appraisal Contexts and Groupings. 

Appraisal Context from Stakeholders Appraisal Group Related to Previous 
Literature 

Application Alteration, Environmental 
Assessment, Sustainability, Risk Assessment 
/ disaster mitigation, Landscape Impact, 
Design 

Planning 

Wetland Size; Existing Land Use; Land 
Sustainability; Land Availability. 

Land Use 

Land Cost; Construction Cost; Energy 
Consumption; Economic Sustainability; Cost 
Benefit Analysis; Whole Life Cost. 

Economics 

Operation Costs; Maintenance Costs. Operation and Maintenance 
Risk of Pathogens; Public Access; Vermin; 
Odour; Flood Risk. 

Health and Safety 

Treatment Requirements; Water Framework 
Directive; Sustainable Development 
Strategy; Carbon Reduction 

Political Considerations 

Invasive Species Risk; Contamination to Food 
Chain; Wildlife Habitat; 

Ecology 

Land Use; Vermin; Health and Safety. Social Perception 
Carbon Reduction; Greenhouse Gas 
Emissions; Energy Consumption 

Carbon Footprint 

Flood Prevention; Disaster Mitigation; 
Climate Sensitivity 

Climate Change Mitigation 

 

Can you now weight the agreed criteria in order of significance to overall ICW performance 

appraisal? 

 

This discussion point relates to Objective 5b as shown in Table 4.1. The stakeholders were 

asked to weight the contexts in order of significance. Pollutant removal was unanimously 

considered the most significant as this is the main purpose of the ICW. Similar to the Variables 

weighting, planning and land use were next. This was justified in a similar way to the variables. 

If land use and planning constraints were not an issue the ICW could be designed to optimise 

treatment of the wastewater. 

The second most significant contexts were those of economics and carbon footprint. 

Stakeholders stated that their main considerations within any development evaluation is to 

understand if the development is fit for purpose and is economically achievable. Therefore, the 

ICW design must consider economic cost in terms of construction, energy consumption 

(carbon footprint) and operation and maintenance requirements. 
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The third most significant contexts were Social Perception and Political Considerations. The 

development of an ICW must meet the requirements and objectives set out by key policy 

frameworks and sustainable development strategies. Local community issues such as odour, 

health and safety of pets and children using the community area and vermin risk need 

consideration. 

The stakeholders gave the lowest weighting category of appraisal contexts to Ecology and 

Climate Change Mitigation. The stakeholders agreed that issues surrounding ecological impacts 

and climate change were very important topics to be considered in the appraisal of ICWs in the 

treatment of wastewater, especially given the natural context in which the systems are 

designed. However, they felt that issues associated with economic stability, sustainable 

planning and development, carbon and energy reductions, were more important than 

concerns over adverse ecological impacts and climate change mitigation. 

After the discussions stakeholders were shown a Pyramid of Significance based on literature 

findings and research as seen in Figure 4.3. The stakeholders were surprised to see that 

economics and land use were ranked beneath operation and maintenance issues. They were 

also surprised by the low ranking of carbon footprint within literature considering its 

importance within the built environment. Figure 5.2 shows the Pyramid of Significance based 

on the stakeholders views from the discussions.  

Although Figure 4.3 and 5.2 are not similar, they have common themes with pollutant removal 

being of significant consideration and climate change being weighted amongst the lowest. 

What was of particular interest was the increase in significance of economics and carbon 

footprint in Figure 5.2. Planning, social perception and policy considerations are also more 

significant. This highlights that the literature reviewed was not fully representative of the key 

issues facing stakeholders in the implementation of ICWs for real life applications. 
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Figure 5.2  Pyramid of Significance Appraisal Context based on Stakeholder Engagement. 

 

What is your opinion on the future of ICWs in terms of implementation and 

additional/alternative applications? 

 

This discussion point relates to Objective 6 as shown in Table 4.1. This section of the 

stakeholder engagement session aimed to obtain the views of stakeholders on the future of 

ICWs with respect to more efficient, effective and sustainable designs. The general outlook for 

future implementation of ICWs was very positive with all stakeholders agreeing that there was 

a place for them in the sustainable development of wastewater infrastructure.  
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What are your opinions on an ICW Best Practice Design Guide to develop a document 

applicable to various industries and applications; what key elements should be included 

within the document? 

 

This discussion point relates to Objective 7 as shown in Table 4.1. The purpose of the 

stakeholder engagement was to discuss the use of an ICW for treating domestic wastewater in 

Northern Ireland. This last part of the stakeholder discussion considered how an ICW Best 

Practice Design Guide could be adapted for other types of water treatment in Northern 

Ireland. 

Each stakeholder had a different view as to what should be included within a design guide. The 

design guide must be relevant to the different applications and industries. Regulators will need 

different types of information. There may need to be a design guide matrix to help decide the 

appropriate design for specific influents. 

 

5.2.1 Summary of Stakeholder Engagement 

 

The aim of this stakeholder engagement session was to gain the attitudes and opinions of key 

stakeholders on the key variables and appraisal contexts that influence the performance of an 

ICW in the treatment of wastewater. The stakeholder engagement session proved to be very 

valuable as it highlighted the following points: 

 

 The stakeholders identified limitations with available literature, 

 Stakeholders should be involved at an early stage in the design process, 

 Stakeholders are not necessarily aware of all the literature available, 

 Health and safety of the local community must be considered if the holistic objectives 

of an ICW are to be achieved. 
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5.3 Stoneyford Full-Scale ICW Results 
 

This chapter considers the data obtained from the Stoneyford full-scale ICW ponds. It is based 

on the water samples taken from the outlets of each pond on a weekly basis over the sampling 

period of 19 months (January 2016 – July 2017). Samples were analysed on the four main 

wastewater treatment contaminants considered important in Northern Ireland Water i.e. BOD, 

Suspended Solids, Ammonia (NH3-N) and COD. Data tables for each of the contaminants are 

given in Appendix D. This chapter considers seasonal and weather effects on the ICW 

treatment performance. The treatment performance is related to changes in vegetation cover 

and surface water. Issues that arose within Pond 1 during the testing period are discussed to 

highlight potential problems for future ICW developments. 

 

5.3.1 Comparison of ICW Inlet and Outlet Analysis 

 

This section shows how the 5 ponds of the ICW treat wastewater by comparing inlet (leaving 

Sludge Pond) and outlet data (leaving Pond 5). Figure 5.3 compares the Inlet contaminant 

levels over the sample period. Figure 5.4 compares the Outlet contaminant levels over the 

sample period. Figure 5.3 shows that Inlet levels of all contaminants rapidly vary over a wide 

range and are all above their Water Order Consent (WOC) levels. COD does not have a WOC.  

Figure 5.4 illustrates that outlet levels of all contaminants are much lower than Inlet levels 

with a narrower range of fluctuation. BOD levels are consistently below WOC of 15mg/l with 

only 1 sample of 40mg/l in November. Suspended Solids are also typically below WOC of 

25mg/l. High levels of suspended solids above 30mg/l were recorded in June, August and 

December 2016 and July 2017. Outlet levels of COD are more stable than Inlet levels across the 

sample period. Ammonia levels are below the WOC of 3mg/l for the majority of the sampling 

period. However, consent was not met between the months of August 2016 and March 2017, 

and again in July 2017. 

Overall, evidence illustrates that Stoneyford ICW can successfully treat wastewater for BOD, 

Suspended Solids, and COD during the first 19 months of its life. More research is needed to 

improve the early life performance of a new ICW in treating Ammonia. 



135 
 

 

 

 

Figure 5.3 Comparison of ICW inlet water quality indicators over time. 

 

0

100

200

300

400

500

BO
D

 L
ev

el
 (m

g/
l)

Inlet

WOC

0

100

200

300

400

500

Su
sp

en
de

d 
So

lid
s 

Le
ve

l 
(m

g/
l) Inlet

WOC

0

10

20

30

40

50

N
H

3-
N

 L
ev

el
 (m

g/
l)

Inlet

WOC

26
-J

an
-1

6

26
-F

eb
-1

6

26
-M

ar
-1

6

26
-A

pr
-1

6

26
-M

ay
-1

6

26
-J

un
-1

6

26
-J

ul
-1

6

26
-A

ug
-1

6

26
-S

ep
-1

6

26
-O

ct
-1

6

26
-N

ov
-1

6

26
-D

ec
-1

6

26
-J

an
-1

7

26
-F

eb
-1

7

26
-M

ar
-1

7

26
-A

pr
-1

7

26
-M

ay
-1

7

26
-J

un
-1

7

0

200

400

600

800

1000

Sample Date

CO
D

 (m
g/

l)

Inlet



136 
 

 

 

 

Figure 5.4 Comparison of ICW outlet water quality indicators over time. 
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5.3.2 Water Quality between Ponds/Area Analysis 

 

This section illustrates the results in relation to the water quality performance of the ICW 

across the area of each of the 5 ponds to determine differences between the performances of 

each pond. The results for BOD removal is shown in Figure 7.5.  

 

 

Figure 5.5  BOD Levels per Pond over Time. 

 

Figure 5.5 illustrates the change in BOD levels per pond across the testing period of 19 months 

plotted as a line graph. This demonstrates that this method is not an appropriate way to 

illustrate how each of the ponds perform over time as it does not account for the retention 

time within the ponds. For example, the BOD of 152mg/l noted in Pond 1 in September cannot 

be related to poor performance of Pond 1 if the Inlet levels at the same date are 223mg/l. 

Rather, the September level in Pond 1 may be related to the high inlet rates of 352mg/l noted 

in April. In order to demonstrate the effects of retention time and performance of each pond, 

the treatment performance of ammonia will be discussed in more detail (Figure 5.6). 
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Figure 5.6  NH3-N levels per pond over time. 
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Figure 5.6 illustrates the change in ammonia levels (measure as Ammoniacal nitrogen) per 

pond across the testing period of 19 months. Inlet levels fluctuate heavily throughout the year, 

particularly between the months of May to November reaching highs of over 47mg/l.  

Pond 1 shows much more stable levels, although still follows a similar pattern of gradually 

increased levels until November. Pond 2 begins stable, before dropping rapidly to 0.06mg/l by 

May. However, levels rapidly increase to 14.94mg/l before the end of June and remain high for 

the rest of the study. 

Ponds 3, 4 and 5 show similar trends with NH3-N levels remaining below the WOC for the first 

6 months of testing. However, in June 2016 Pond 3 begins to steadily increase and Ponds 4 and 

5 follow a similar pattern by the end of June/ beginning of July 2016. The 3 ponds continue to 

increase steadily until January 2017 when they begin to decrease below the WOC by the end of 

March 2017. Pond 3 then records another spike of 4.27mg/l at the beginning of April 2017 and 

continues to rise in a similar trend to the previous year with Ponds 4 and 5 continuing to follow 

by June 2017. 

Ponds 3, 4 and 5 follow an ‘n’ shaped curve, seemingly beginning around spring each year. It 

could be suggested that their performance is cyclical or seasonal. It may be suggested that it 

could take a period of time longer than the 2 years of this study for the ponds to reach a state 

of equilibrium. It may also be suggested that the ICW is more susceptible to seasonal impacts 

in its early life. Another possible explanation for this could be related to an influx of wildlife or 

migratory birds. It is well known that many species of migratory birds flock to the wetlands of 

Northern Ireland during the autumn to spend the winter in milder climates; this fact coupled 

with the direct intent of the design of Stoneyford ICW to encourage wildlife into the area 

suggests that an influx of birds is plausible. 

This would have an impact on the ammonia levels due to an increase in droppings at the later 

stages of the wetland, where the plants have less retention time to treat the wastewater 

before being discharged. It is apparent from Figure 5.6 that there is a period of retention 

between the ammonia levels reaching above WOC levels in Pond 3 in July, Pond 4 in August 

and Pond 5 in October. It is also apparent that the period of time taken to reduce ammonia 

levels back below WOC reduces over time. Pond 3 takes 9 months, Pond 4 takes 8 months and 

Pond 5 only 5 months. This evidence would suggest that having more than 5 ponds could 

reduce the levels of ammonia at the discharge point further and mitigate the effects of high 

fluctuations caused in earlier ponds. 
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Figure 5.7 Area under line graphs for each contaminant plotted against number of ponds. 
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The results have indicated that there is evidence to suggest that each of the ponds performed 

differently in treating ammonia with Ponds 1 and 2 typically less stable than Ponds 3-5. Results 

also indicate that retention time and wastewater concentration within ponds must be 

considered to fully analyse the treatment performance of each individual pond. 

The results of the total contaminant levels over the 19 month sampling period within each 

pond were plotted against the number of ponds. Using this data an area under the line graph 

was plotted for each of the contaminants as shown in Figure 5.7. This shows the total amount 

of contaminant within each of the ponds over the period of the 19 month study. This 

illustrates the correlation between the number of ponds and the amount of contaminant 

within the pond. From this it can be seen that the treatment of wastewater within the system 

improves with the number of ponds. BOD levels fall quickly and by Pond 2 seem to have 

reached equilibrium. There is a significant spike in the data leaving Pond 1 for SS during this 

early life sampling period. This may reflect the continuing issues with Pond 1 relating to water 

depth/ open water and engineering works associated with this particular pond. It may also be 

influenced by bird life taking advantage of the open water. There is a steady drop in ammonia 

through the 5 ponds. The data suggests it may not have reached equilibrium and a 6th pond 

may have been necessary. It is noted that the ICW has not reached maturity during the period 

of this investigation. COD follows a similar trend to BOD. Representing the data in this way 

illustrates the importance of the relationship between ICW performance and number of ponds 

and is of use in the initial design process. 

Further research is recommended to determine how retention times within each of the ponds 

changes over time. This could potentially be used to predict future performances of the ponds 

and aid in the optimisation of future ICW design. 

 

5.3.3 Water Quality against Seasonal Variations 

 

This section illustrates the results in relation to the water quality performance of the ICW 

against seasonal variations of precipitation, air temperature, wind speed and humidity over 

the sample period of one year, to determine if external conditions have a direct influence on 

wetland performance.  
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The weather data was supplemented from the MetOffice archives for the nearby weather 

station at Aldergrove Airport. Hourly weather data was obtained for the yearly testing period 

and was then combined into daily and weekly averages for the week prior to each of the 

sample dates as seen in Appendix E. This gives the representative weather conditions for the 

week prior to sampling. 

Table 5.3 illustrates the significance in correlation between contaminants levels leaving Pond 5 

and weather. Linear regression failed to find any meaningful relationships between 

contaminant levels and weather for the week prior to sampling. The results plotted for NH3-N 

against humidity are given in Figure 5.8 as this showed the most significant correlation 

between weather and treatment. 

 

Table 5.3 Significance of weather variables against discharge water quality. 

Contaminant Weather Variable Equation R2 Value 
BOD Total Precipitation y = -0.0492x + 5.346 0.0198 

Air Temperature y = -0.0535x + 4.8292 0.0015 
Wind speed y = -1.3294x + 9.7886 0.0564 
Humidity y = 0.1023x - 4.2565 0.0069 

Suspended Solids Total Precipitation y = -0.1551x + 17.176 0.0141 
Air Temperature y = -0.0265x + 14.191 2E-05 
Wind speed y = -6.943x + 42.433 0.1108 
Humidity y = 0.0963x + 5.8788 0.0004 

Ammonia (NH3-N) Total Precipitation y = -0.0525x + 3.6051 0.0514 
Air Temperature y = -0.2354x + 4.6588 0.0653 
Wind speed y = -0.401x + 4.1296 0.0117 
Humidity y = 0.4224x - 32.934 0.2787 

COD Total Precipitation y = -0.3959x + 75.035 0.0197 
Air Temperature y = 5.2603x + 16.365 0.2123 
Wind speed y = -15.849x + 131.81 0.1238 
Humidity y = -0.7092x + 126.11 0.0049 

 

Overall the results demonstrate that although slight trends can be seen for each of the 

contaminants against the various weather variables, the relationships show no statistical 

significance. Thus, it can be concluded that weather and seasonal variations have little to no 

impact on the ICW ability to treat wastewater.  
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This is contradictory to the previous results from literature described in chapter 2.10.5 which 

suggest seasonal or weather related trends. Some of these previous studies had been carried 

out under ideal laboratory conditions and are limited in their ability to replicate real life 

conditions. This illustrates the importance of a full-scale trial such as Stoneyford ICW. 

The lack of correlation agrees with the findings from the stakeholder engagement that climate 

should be considered but is not deemed a significant variable in impacting ICW wastewater 

treatment performance. It should be noted however that these results do not account for 

time, maturity or other external factors such as plant growth, influent concentration, site 

disturbances or flow changes which may be impacted by climatic conditions. 

 

 

Figure 5.8 Discharge NH3-N levels in relation to average weekly humidity. 
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5.3.4 Full Scale ICW Results Summary 

 

This chapter has provided an analysis of the data collected from the full scale ICW system at 

Stoneyford. The data collected was correlated and observed to identify trends and interactions 

between the key variables discussed previously. Results indicated the following: 

 there is evidence to suggest that Ammonia and COD performances are impacted over 

time, while BOD and SS were not; 

 there is evidence to suggest that each of the ponds performed differently against the 

various contaminants with Ponds 1 and 2 typically less stable than Ponds 4 and 5, and 

Pond 3 performing differently for each of the contaminants; 

 evidence suggests that performance of ponds 3, 4 and 5 in treating Ammonia and COD 

may be cyclical with reduced performance occurring at similar times each year (winter 

period); 

 evidence suggests that an increased number of ponds will reduce the effects of high 

ammonia levels from earlier in the ICW system; 

 comparisons of treatment within each pond could be used to determine retention 

times; 

 weather and seasonal variations have little to no impact on the ICW ability to treat 

BOD, suspended solids, Ammonia or COD. 

 

5.4 Pond 1 Issues 
 

When analysing the results of the ICW, it is important to consider the following issues that 

arose. Despite being designed and constructed to have a level floor bed, some of the ponds 

showed evidence of an uneven bed which caused flooding in some areas as illustrated in 

Chapter 6. This was particularly apparent in Pond 1 where a variable water depth was 

apparent. Figure 5.9 illustrates the topographical survey of Pond 1 which demonstrates the 

different levels of the pond bed and areas of deeper water. This was confirmed when Pond 1 

was drained for weir maintenance. 
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Figure 5.9 Pond 1 Topographical Survey (drawing provided by BSG Civil Engineering). 

 

Pond 1 may have been influenced by water from previous field drains or stream. A desktop 

study which outlines the site boundaries onto the Stoneyford Ordinance Survey Map 5th 

Edition (Figure 5.10), demonstrates that a stream once flowed through the area where Pond 1 

is now located. This stream is not identifiable on more recent OS maps. Another viable reason 

could be due to disruption of the pond bed during the construction of the Test Rig as described 

in Chapter 3. 
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Figure 5.10 Outline of Stoneyford on Stoneyford Historical OS Map 5th Edition (PRONI, 2017). 

 

 

Figure 5.11 Drying and clogging in Pond 1 during April 2017. 

 

The flow from the sludge Pond into the wetland was inconsistent at best; as described in 

Chapter 7, the flow showed large differences between days. This caused issues with clogging, 
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especially during periods of dry weather as illustrated in Figure 5.11. This shows areas of deep 

water around the edges of Pond 1 and most of the Pond bed to be above water level. NIW 

decided to address the issues in Pond 1. Works began in July 2017 to drain the pond and lower 

the weir by 500mm. This would allow for a more consistent water level of <250mm to be 

reached as suggested by the design guidance (Figure 5.12). 

 

 

Figure 5.12 Lowering of Pond 1 weir to reduce water level July 2017. 

 

Figure 5.13 Completed weir at Pond 1 outlet allowing shallower water in Pond 1 August 2017. 
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Figure 5.14 Plant disruption in Pond 1 after TR construction May 2017. 

 

 

 

Figure 5.15 Regrowth of Pond 1 vegetation after remediation works in August 2017. 

 



149 
 

As a result of the works being completed (Figure 5.13), the plants at the TR within Pond 1 

regrew and flourished within a matter of weeks. Figure 5.14 illustrates the area of surface 

water in Pond 1 at the TR in May 2017 Figure 5.15 illustrates the regrowth of plants within 

Pond 1 in August 2017 where no surface water is visible.   

This evidence illustrates how quickly the ICW can return to a fully vegetated area when such 

issues are remediated. This highlights their ability as living systems to recover and redevelop 

into fully functioning wastewater treatment systems once again. 

 
5.5 Stoneyford Small-Scale Test Rig Results 

 

As discussed within the literature review, the design of constructed wetlands has been 

researched and studied since the 1960s using various test beds, full scale systems and 

laboratory studies. However, the author is not aware of any studies which review the design 

principles of ICWs treating domestic wastewater in an outdoor environment.  

This chapter details findings from a small-scale Test Rig designed by the author to test the 

design principles of an ICW in treating domestic wastewater at Stoneyford ICW. This chapter 

details the results collected over a 9 month period from August 2016 to April 2017. The 

sampling stopped after 9 months to accommodate for the draining of Pond 1 for the weir 

maintenance. The chapter considers the flow of wastewater at the inlet and outlet of each test 

bed. The chapter also compares water quality analysis of each of the test beds against the 

investigated design parameters of surface area and wastewater depth. 

Water samples were taken from the outlets of each of the ponds on a weekly basis and 

analysed on the four main indicators of water quality of concern to Northern Ireland Water; 

BOD, suspended solids, Ammonia (NH3-N), and COD. Data tables for each of the contaminants 

are available in Appendix F. 

 

5.5.1 Flow Rate between Each Bed 

 

This section considers the flow levels taken at the inlet and outlet of each bed to highlight the 

flow within each. A 10-way splitter chamber was used to ensure that each of the 8 beds within 
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the TR received equal flow of influent. The inlet and outlet flow rates of Test Beds 1 – 7 are 

illustrated in Figure 5.16. 

Figure 5.16 illustrates that although the inlet levels entering each of the beds is similar, there 

are fluctuations with inflow and outflow. This may suggest that each bed did not receive equal 

amounts of wastewater during the study period. Or the stream identified in 5th edition 

Ordnance Survey Map / old field drains may have influenced the data.  

 

 

Figure 5.16 Inlet and Outlet rate per Test Bed. 

 

0

200

400

600

800

1000

1200

1400

1600

In
le

t F
lo

w
 R

at
e 

(m
l/s

)

T1

T2

T3

T4

T5

T6

T7

0

200

400

600

800

1000

1200

1400

1600

Measurement Date

O
ut

le
t F

lo
w

 R
at

e 
(m

l/s
)

T1

T2

T3

T4

T5

T6

T7



151 
 

To ensure that this was not due to a fault in the 10-way splitter chamber, an investigation was 

carried out to establish if the level within the chamber was correct and consistent. Using a 

spirit level, the levels were measured across all the chambers and found to be consistent as 

shown in Figure 5.17.  

 

 

Figure 5.17 Measuring the level of the splitter chamber. 

 

One explanation suggested by consultation at NI Water that could be used to explain the 

uneven flow would be the velocity and direction of the flow entering into the chamber. If the 

velocity is high entering into the chamber from the side of the chamber, it will create a spin in 

flow as it is forced upwards before allowing to flow into each of the 10 chambers. This will 

result in a preferential flow for the influent, causing some of the chambers to receive more 

than others. The large spike of flow measured on the 16th December 2016 corresponds with a 

heavy fall of rain at 21mm on that day. This would cause an increase of flow from the sludge 

ponds and the splitter chamber into the test beds and would subsequently increase the flow 

from the outlet as seen in Figure 5.16. 
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Figure 5.16 illustrates that outlet levels showed a similar pattern to inlet levels across the 

sampling period, but in some cases the amount of flow exiting the pond is higher than what is 

entering through the inlet. This could be due to the following reasons: 

 Inlet flow did not account for any precipitation that may have fallen into the test beds 

that may have caused an increased outlet rate; 

 

 Inlet rates were heavily influenced by the turning on of the influent pump into the 

sludge ponds; if an inlet flow was measured after the pump had been turned off, the 

rate would be relatively low in comparison to the outlet flow which will have some 

degree of retention. 

Overall, it can be seen that inlet and outlet levels, although similar, were not equal and may 

have influenced the test rig investigations. Although there is no evidence to suggest that the 

changes in flow had any direct impact on the test bed performances. 

 

5.5.2 Performance of Each Test Bed over Time 

 

This section illustrates the results in relation to the water quality performance of each of the 

test beds within the TR over the duration of the sampling period of 9 months to determine if 

there are any notable differences in treatment performance. The performance for this section 

was based on the difference in concentration of each contaminant between the Inlet levels 

and the discharge at the end of each pond (outlet).  

Test bed H1 was used to represent a HSSF system and is of different design parameters than 

T1 – T7. It is hoped that this section will provide an understanding of how the HSSF performs 

against the different design parameters of the ICW when built to the same scale and treating 

the same wastewater influent.  

However, it must be noted that the water depth of H1 was altered throughout the study 

period to determine the impact of water depth within the HSSF on treatment performance. 

Although the water depths being tested were within the suitable range for effective treatment 

within HSSF design and should not impact treatment ability, the changes in depth should be 

considered when analysing HSSF performance against the other test beds which have a more 

uniform water depth over the duration of the study.  
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Figure 5.18 Outlet water quality between test beds over time. 
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Figure 5.18 illustrates the water quality results at the outlet of each of the test beds over the 9 

month test period. Results show that for BOD removal the test beds followed similar patterns 

throughout the study. Suspended solids results show that most of the beds follow similar 

trends, although T1 and H1 show large spikes.  

For ammonia, the results again show similar trends with all test beds apart from October 2016 

when a clear difference in performance can be seen. COD results are similar to suspended 

solids in that all beds follow the same trends with T1 and H1 showing spikes in levels. 

Test beds T1-T3 performed better than other beds for BOD, suspended solids, and ammonia 

removal while T4 and T5 showed similar neutral results. For COD performance however, T4 

and T5 performed the best, followed by T1-T3. Test beds T6, T7 and H1 consistently performed 

more poorly than the other beds for all of the treatments tested. 

 

5.5.3 Water Quality over Surface Area 

 

This section illustrates the results in relation to the water quality performance of each of the 

different pond surface areas of 40m2, 60m2 and 80m2 to determine if the design rule of thumb 

of 20m2 – 40m2pe is appropriate. The performance for this section was based on the 

performance of each of the different surface areas in treating the four main contaminants.  

The test beds are split into 2 groups; 3 of which are set at a water depth of 50mm and 3 are set 

at a water depth of 250mm. This allows for a comparison of each surface area within different 

water depths to allow for a better understanding of the impacts of volume on performance. 

The results from each of the contaminants will be illustrated in turn, with a combined 

summary of overall performance over time given at the end. 
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Figure 5.19 BOD surface area comparison at 50mm and 250mm water depth. 

 

Figure 5.19 shows the BOD performance comparisons between the test beds of different 

surface areas at different water depths. T3 typically performs better than T2 but only 

outperforms T1 for around half of the study. This would suggest that at a water depth of 

50mm, there was no significant difference in wastewater treatment at the different surface 

areas, however the larger surface area tended to be the most effective over the study 
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With regards to 250mm water depth, all beds show very similar trends with T6 tending to be 

more stable than T4 with a narrower range of fluctuation. However BOD levels are typically 

higher in T6 than T4 suggesting that stability of water treatment has not improved the beds 

ability to treat BOD. T7 also illustrates a similar trend to T6, although has typically higher BOD 

levels. Overall it can be concluded that surface area has a small impact on the Test Rig’s ability 

to treat BOD, with the larger areas typically being more effective, especially when water depth 

is high. However, the differences are marginal. 

 

 

Figure 5.20 SS surface area comparison at 50mm and 250mm water depth. 

 

0

500

1000

1500

2000

2500

3000

SS
 L

ev
el

 (m
g/

l)

50mm Water Depth

Inlet

T1 40m2

T2 60m2

T3 80m2

0

500

1000

1500

2000

2500

3000

SS
 L

ev
el

 (m
g/

l)

Sample Date

250mm Water Depth

Inlet

T4 80m2

T6 60m2

T7 40m2



157 
 

Figure 5.20 shows the SS performance comparisons between the different surface areas at 

different water depths. T3 demonstrated a more consistent level of performance throughout 

the study, although T2 was similar in SS treatment despite having less water treatment 

stability. T1 showed very high fluctuations across the study and was typically higher 

throughout, although SS levels did show good performance during certain times. This would 

again suggest that the higher surface area of 80m2 was more effective in SS removal than the 

smaller 60m2 and 40m2 test beds when set at a water depth of 50mm. At a water depth of 

250mm T4 shows a stable SS removal with typically lower levels being recorded. T6 and T7 all 

show very similar patterns and SS levels, with T7 underperforming in comparison to the others 

towards the end of the study. Overall it can be concluded that surface area has a small impact 

on the Test Rig’s ability to treat SS, with the larger areas typically being more effective, 

especially when water depth is high.  

 

 

Figure 5.21 NH3-N surface area comparison at 50mm and 250mm water depth. 
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Figure 5.21 illustrates the NH3-N performance comparisons between the 3 different surface 

areas at different water depths. T1 levels fluctuate greatly over the study period although 

levels are typically within a slightly narrower range than the inlet with a large decrease in 

levels to 0.24mg/ in February. T2 and T3 levels are almost the same as T1 with lower levels of 

NH3-N being recorded in October. T4 demonstrates the lowest NH3-N results recorded in 

October, although results are generally very similar to T6 and T7 for the remainder of the 

study, with T6 underperforming towards the end of the study. Overall it can be concluded that 

surface area has a small impact on the Test Rig’s ability to treat NH3-N, with the larger areas 

typically being more effective. However, this change is very slight when at higher water 

depths. 

 

 

Figure 5.22 COD surface area comparison at 50mm water depth. 

 

0

500

1000

1500

2000

2500

CO
D

 L
ev

el
 (m

g/
l)

50mm Water Depth

Inlet

T1 40m2

T2 60m2

T3 80m2

0

500

1000

1500

2000

2500

CO
D

 L
ev

el
 (m

g/
l)

Sample Date

250mm Water Depth

Inlet

T4 80m2

T6 60m2

T7 40m2



159 
 

Figure 5.22 shows the COD performance comparisons between the different surface areas at 

different water depths. T1 shows very high spikes of 1460mg/l in August and 2190mg/l in 

September, before stabilising below the inlet levels for the remainder of the study. T2 however 

is much more stable, remaining below the inlet levels consistently over the study period, 

although typically tends to record higher levels than T1 after September. T3 COD levels begin 

high at 342mg/l, however they quickly stabilise and follow a similar but lower pattern to T2, 

although slightly higher than T1.  

T4 shows typically lower COD levels than the other beds throughout the study, although T6 

tends to perform better during middle of the study with T7 showing the highest levels in 

January of 796mg/l. Again, it can be concluded that surface area has a little impact on the Test 

Rig’s ability to treat COD, with the larger areas being slightly more effective. However, this 

change between 60m2 and 80m2 is very slight when at higher water depths. 

 

5.5.4 Water Quality over Water Depth Comparisons  

 

This section aims to illustrate the results in relation to the water quality performance of each 

of the different water depths of 50mm, 150mm and 250mm in order to determine if the 

design principles of having no less than 50mm of water and no more than 250mm of water 

depth were appropriate.  

The performance for this section was based on the performance of each of the different water 

depths of the three 80m2 test beds in treating the four main contaminants. The results from 

each of the contaminants is illustrated in Figure 5.23. 

For BOD performance the test beds show similar patterns of fluctuations across the 9 month 

test period. T3 typically showed the lowest figures across the testing, whereas T4 and T5 

showed similarly higher levels. This would suggest that at a surface area of 40m2 pe, the 

shallower water depth of 50mm was more effective in removing BOD. 

SS performance results appears much more stable across the 9 month test period with the 

exception of T3, which had very high levels at the beginning of testing. T3 again tends to show 

typically lower figures across the testing, whereas T4 and T5 showed similar patterns that were 

slightly higher in levels. This would suggest that at a surface area of 40m2 pe, the shallower 

water depth of 50mm was more effective in removing SS. 
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Figure 5.23  Water Quality comparisons at 80m2 surface area. 
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In terms of ammonia performance, all test beds again show similar patterns of fluctuations 

across the 9 month test period; however, there is no water depth that performs consistently 

lower than the others, which would suggest that water depth has little to no impact on NH3-N 

removal at this scale. T3 and T4 showed similar performances, with T4 showing higher levels at 

the beginning of the study and T3 showing higher levels at the end.  

T5, despite showing similar patterns, was much more consistent in results, which would 

suggest that a water depth of 150mm could be the most effective in treating NH3-N at an area 

of 40m2 pe in the long term, although results were again not significantly different than the 

other water depths. 

 

5.5.5 Horizontal Bed Performance against Depth Variances 

 

This section illustrates the results in relation to the water quality performance of the HSSF bed 

under the different water levels to determine how it performs under each of the different 

ratios of soil and gravel to water. This was achieved by changing the water depth between 

surface level 0mm and 200mm beneath the surface across the period of 9 months. The 

performance for this section is based on the performance of each of the different water 

depths in treating the four main contaminants. The results from each of the contaminants are 

displayed on one graph with water depth displayed on a second axis so that a comparison 

between contaminants and connection to water depth could be made. Results are illustrated 

in Figure 5.24. 

Figure 5.24 illustrates the impacts of changing water depth on the four main contaminants of 

BOD, suspended solids (SS), Ammonia (NH3-N) and COD over the test period of 9 months. BOD 

levels fluctuated over the 9-month period but showed no real relationship to changes in water 

depth at any stage. Suspended solids on the other hand showed consistent changes in relation 

to water depth; as the water level decreased below the surface of the HSSF, suspended solids 

increased and when water levels rose again, suspended solids levels decreased.  
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Figure 5.24 Water Depth vs Water Quality within a HSSF Test Bed. 
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5.5.6 Test Rig Results Summary 

 

This chapter has provided an analysis of the data collected from the small scale TR system at 

Stoneyford. The data collected was compared and observed to identify trends and interactions 

between the key variables discussed previously. Results indicated the following: 

 test beds performed differently in the removal of various contaminants with T1-T3 

performing better than other beds for BOD, suspended solids, and ammonia removal 

while T4 and T5 performed better for COD. Test beds T6, T7 and H1 consistently 

performed weaker than the other beds for all of the treatments tested; 

 evidence suggests that a change in surface area between 40m2 – 80m2 has very little 

impact on the wetlands ability to treat wastewater although the larger surface areas 

did tend to be slightly more effective; 

 evidence also suggests that a change in water depth between 50mm – 250mm has 

little impact on the wetlands ability to treat wastewater although the shallower water 

depth of 50mm did tend to be more effective than the deeper ponds; 

 decreasing the water level of a HSSF from surface level 0mm to 200mm beneath the 

surface had little to no effect on BOD or ammonia treatment although there was a 

significant correlation between water levels within the HSSF and the levels of 

suspended solids and COD. 

 

5.6 Drone Study Results 

 

The use of drones for monitoring vegetation is not new. Previous studies have identified the 

benefits of monitoring vegetation from an aerial view for various applications such as forestry 

(Lisein, J., et al., 2014), agriculture (Mesas-Carrascosa, F., et al., (2015); Miller, E., et al., (2017)) 

and aquatic plants (Husson, E., et al., 2016; 2017). However, the use of a drone to monitor 

vegetation within a constructed wetland is an innovative method of measuring performance. 

This chapter considers flying a drone over the ICW system at Stoneyford to determine whether 

it is possible to model vegetation change with time and ICW treatment performance. The 

methods are described in Chapter 5 and Appendices B and C. This produced two types of data 

for analysis. These were over-head photographs which were analysed using Image Pro 

Software to quantify changes in vegetation growth. Videos were recorded and then analysed 
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using Zephyr Arial software to create 3D models of each pond to determine whether the 

volume of vegetation could be determined. An aerial image of the site taken from Pond 5 using 

a drone is shown in Figure 5.25. 

Photographs of each pond were taken during site visits in December 2016, February 2017, 

April 2017 and July 2017. The photographs were taken by the drone flying at an altitude of 

120m. This allowed the entire pond to be included in a single photograph. Photographs for 

each pond are shown in Figures 5.26 – 5.30. These show how the vegetation in each pond 

changed during this 7 month period. Video was recorded during the visits in December 2016, 

February 2017 and April 2017 for 3D modelling.  

 

Figure 5.25 Aerial image of site from Pond 5. 
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Figure 5.26 Time Sequence Images of Pond 1 from December 2016 to July 2017. 
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Figure 5.27 Time Sequence Images of Pond 2 from December 2016 to July 2017. 
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Figure 5.28 Time Sequence Images of Pond 3 from December 2016 to July 2017. 
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Figure 5.29 Time Sequence Images of Pond 4 from December 2016 to July 2017. 
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Figure 5.30 Time Sequence Images of Pond 5 from December 2016 to July 2017. 
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5.6.1 Comparison of Aerial Photograph with Planting Plan 

 

Figures 5.31 – 5.35 illustrate the planting plans for each of the 5 ICW ponds. These figures can 

be compared with the aerial images of each of the 5 ponds in Figures 5.26 – 5.30. This 

comparison allows for areas of planting to be correlated with individual plant species. 

Key:  

 GM (Glyceria maxima),  

 TL (Typha latifolia),  

 IP (Iris pseudacorus),  

 TA (Typha angustifolia),  

 CR (Carex riparia),  

 M (mix of appropriate species as listed in Chapter 3) 

 

Figure 5.31 Pond 1 planting plan. 
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Figure 5.32 Pond 2 planting plan. 

 

 

Figure 5.33 Pond 3 planting plan. 
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Figure 5.34 Pond 4 planting plan. 

 

 

Figure 5.35 Pond 5 planting plan. 
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Comparison of Figures 5.31 – 5.35 with Figures 5.26 – 5.30 illustrates that Glyceria maxima 

remains present within all the ponds across seasons with die back in winter. Typha latifolia was 

more consistent than Carex riparia in Pond 1, however Typha latifolia showed significant die 

back during the winter in Ponds 2-4. 

Iris pseudacorus and Typha angustifolia appeared to die back in Ponds 2 and 3 in winter. The 

Mix of species shows differences in seasonal distribution, which could be related to the 

densities of particular species within the mix of each of the ponds. 

During the planting of the Test Rig it was proposed that established plants were extracted 

manually from Pond 1. This proved difficult due to their established root structure. The use of 

machinery was considered inappropriate as it would be difficult to select specific species. Thus, 

manual plant extraction occurred in September when the plants began to die back. The 

combination of late planting and unscreened influent hindered initial plant establishment.  

 

5.6.2 Comparison of Pond Vegetation Area 

 
The area of the ponds was calculated using the 2 methods described in Appendices B and C. 

Table 5.4 compares the design areas of each pond with area data from Google Earth Pro, 

Image Pro and 3DF Zephyr Aerial.  

 

Table 5.4 Comparison of pond areas. 

Pond Area (m2) Difference from Original 

Design (%) 

 Original 

Design  

Google 

Earth Pro 

Image Pro 

(Average 

of 4 site 

visits) 

Zephyr 

(Average 

of 4 site 

visits) 

Google 

Earth 

Pro 

Image 

Pro 

Zephyr 

Pond 1 7476 6860 7084 5493 -8 -5 -27 

Pond 2 8301 9047 8252 10576 9 -1 27 

Pond 3 8939 8588 7745 9362 -4 -13 5 

Pond 4 5874 5836 5423 5973 -1 -8 7 

Pond 5 6479 6424 6653 6904 -1 -3 7 



174 
 

Table 5.5 Pond area comparison between Image Pro analysis and Google Earth.  

 
 

 

The area data from Table 5.4 shows that the areas recorded using Google Earth Pro, Image Pro 

and 3DF Zephyr Aerial analysis was typically within 10% precision when compared to the 

original design. Google Earth Pro and Image Pro area analysis were within similar ranges to 

each other, confirming their accuracy. Ponds 2 and 3 however showed a difference of 27% 

between the Zephyr calculation and the original design, and over 20% difference between the 

Google Earth Pro and Image Pro analysis. This level of accuracy is deemed poor; however this 

should not diminish the credibility of the findings for the Zephyr analysis of Ponds 3 -5. The 

data collected illustrates that aerial photography using drones is effective for measuring 

wetland area.  

Pond Date Area (m2) % 
Difference 
between 
Image Pro 
and 
Google 
Earth 

Water Green Brown Total 
(Image 
Pro) 

Total 
(Google 
Earth) 

1 December 2126 2007 2519 6651 6860 -3 
February 1965 272 4848 7084 6860 3 
April 2916 1504 1961 6380 6860 -7 
July 389 6088 162 6638 6860 -3 

2 December 2130 5837 285 8252 9047 -9 
February 1958 2996 3642 8596 9047 -5 
April 2147 3620 3354 9121 9047 1 
July 750 7504 457 8712 9047 -4 

3 December 1867 4405 1696 7967 8588 -7 
February 2626 909 4210 7745 8588 -10 
April 3023 3205 1560 7788 8588 -9 
July 597 7324 117 8038 8588 -6 

4 December 363 4689 372 5424 5836 -7 
February 1271 2792 1329 5393 5836 -8 
April 2300 1888 1405 5593 5836 -4 
July 357 4605 684 5645 5836 -3 

5 December 271 5031 1450 6752 6424 5 
February 1091 4757 805 6653 6424 4 
April 1185 4922 903 7010 6424 9 
July 415 6567 12 6994 6424 9 
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A comparison of pond vegetation area over the 7 month period from December 2017 to July 

2017 was carried out using Image Pro and Google Earth Pro. The drone image was subdivided 

into three areas i.e. water, green (healthy vegetation) and brown (decaying vegetation). These 

were combined to form a total area. The area measurement function in Google Earth Pro was 

used to determine the total area of each pond. This acted as a control to compare the accuracy 

of the Image Pro image analysis.  

 

 
Table 5.6 Vegetation distribution over time using Image Pro analysis. 

Pond Date Area (% of total pond area) 

Water Green Brown Total Vegetation 

1 December 
32 30 38 68 

February 
28 4 68 72 

April 
46 24 31 54 

July 
6 92 2 94 

2 December 
26 71 3 74 

February 
23 35 42 77 

April 
24 40 37 76 

July 
9 86 5 91 

3 December 
23 55 21 77 

February 
34 12 54 66 

April 
39 41 20 61 

July 
7 91 1 93 

4 December 
7 86 7 93 

February 
24 52 25 76 

April 
41 34 25 59 

July 
6 82 12 94 

5 December 
4 75 21 96 

February 
16 71 12 84 

April 
17 70 13 83 

July 
6 94 0 94 
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Table 5.5 compares the areas obtained using the two methods described in Appendices B and 

C. This breaks down each pond into the area of water, green and brown. It compares the total 

area determined using Image Pro with that determined using Google Earth Pro. This shows the 

percentage difference between the two methods to be typically less than 7% with none 

greater than 10%.  

The data in Table 5.5 shows how the water, green and brown areas for each pond change with 

time. The area of water, green and brown for each of 5 ponds from each of the 4 site visits was 

calculated as a percentage of the Image Pro total area. The percentage area of water, green 

and brown vegetation is shown in Table 5.6. The percentage data is plotted as the stacked bar 

charts shown in Figures 5.36 – 5.40. The use of percentage data offers an alternative way to 

analyse the performance of each pond in terms of vegetation with time.  

 

 

 

Figure 5.36 Percentage change in area of Pond 1 vegetation with time. 
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Figure 5.37 Percentage change in area of Pond 2 vegetation with time. 

 

Figure 5.38 Percentage change in area of Pond 3 vegetation with time. 
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Figure 5.39 Percentage change in area of Pond 4 vegetation with time. 

 

Figure 5.40 Percentage change in area of Pond 5 vegetation with time. 
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The change in Pond 1 vegetation is shown in Figure 5.36. In December 2016 32% of Pond 1 

area was open water with no vegetation, 30% was healthy green vegetation and 38% was 

brown or decaying vegetation. By February 2017, the amount of open surface water had 

decreased to 28%. The amount of brown vegetation had increased to 68% leaving 4% green 

vegetation. In April 2017 the amount of decaying vegetation has decreased as the vegetation 

recovers. However, the amount of surface water was 45%.  

This correlates with the die back of vegetation and disturbance of the pond as seen in Figures 

5.26 and 5.36. By July 2017 there was a significant reduction in surface water to 6% with 92% 

being green vegetation. This shows Pond 1 vegetation to have recovered considerably over the 

7 months. This change in Pond 1 vegetation correlates with the seasonal treatment 

performance results given in Chapter 5.3.3. This found BOD levels increase from 16.4mg/l in 

December to 259mg/l in April before improving to less than 6mg/l in July. Ammonia levels 

increased from 24mg/l in December to 36mg/l in February and improved to less than 5mg/l by 

July.  

The change in Pond 2 vegetation is shown in Figure 5.37. This shows Pond 2 had much greater 

green vegetation in December 2016 than Pond 1 with almost 71% coverage. By February 2017 

the amount of vegetation has remained but the distribution of brown vegetation has increased 

over 12 times to 42% coverage. By April the green vegetation (40%) begins to take over, 

reaching 86% by July with less 9% surface water.  

Figure 5.38 illustrates that in December 2016, Pond 3 has less surface water than Pond 2 at 

23%, although there is much more brown vegetation coverage at over 21%. By February 2017, 

the surface water has increased to almost 34% with much of the vegetative cover taken up by 

brown decaying matter at 54%. By April 2017 water area remains higher at almost 39%, 

however the brown vegetation has reduced, giving 41% green coverage. In July 2017 Pond 3 

has approximately 91% green cover and only 7% surface water. Pond 3 vegetation distribution 

correlates with BOD performance discussed in Chapter 7 with 4mg/l measured in December, 

reaching 7mg/l by April 2017 before falling back to around 4mg/l by July 2017.  

Figure 5.39 shows that Pond 4 has significantly lower surface water levels in December than 

the previous ponds at just under 7% and the vegetation is relatively healthy with over 86% 

green coverage. February 2017 shows signs of vegetation remaining healthy with only 25% of 

coverage representing brown or decaying matter. By April 2017 water levels reach the highest 

coverage of all ponds (41%), and with brown coverage remaining close to 25%, green coverage 
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has reduced to less than 34%. However, by July 2017 Pond 4 surface water reduces to 6% and 

brown coverage reduces to 12% allowing for over 81% green coverage. When related to the 

treatment performance discussed in Chapter 5.3, vegetation distribution again shows 

correlations with BOD levels with December reaching around 4mg/l and remaining at <3mg/l in 

February. By April 2017, BOD levels reach 5mg/l which correlates with the increase in surface 

water. Levels then return to around 4mg/l with an increase in vegetation in July 2017. 

The change in Pond 5 vegetation is shown in Figure 5.40. This shows Pond 5 to have the mostly 

green vegetation that remained relatively unchanged over the 7 month period. This reflects 

the treatment performance of Pond 5 discussed in Chapter 7 which demonstrates the most 

stable levels of all contaminants between its inlet and outlet.  

 

5.6.3 Drone Imagery and Wastewater Treatment Performance 

 

Drone photographs can be used to quantify vegetation change with time and be correlated to 

wastewater treatment performance. They can quantify both vegetation growth and dieback 

highlighting areas of concern that may not be apparent from walking around each pond. For 

example, the problem with excessive free water in Pond 1 could be seen from the ground. 

However, Ponds 3 and 4 seemed relatively healthy from ground level with almost full 

vegetation coverage as seen in Figures 5.41 and 5.42 taken in March 2016. The drone 

photographs in Figure 5.26 – 5.30 showed Ponds 3 and 4 to have large areas of surface water 

from February to April in their central areas that could not be seen from the edges. 
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Figure 5.41 Pond 3 vegetation coverage from ground level in March 2016.  

 

 

Figure 5.42 Pond 4 vegetation coverage from ground level in March 2016. 

 

Drone images can also identify areas of open water, or preferential flow through the system. 

For example, the December 2017 and February 2017 images of Pond 1 shown in Figure 5.26 

clearly show an area of surface water around the ponds edge. At ground level, this area of 

open water shows evidence of preferential flow as seen in Figures 5.43 and 5.44. Figure 5.45 
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confirms the presence of deep water around the edge when Pond 1 level was lowered for weir 

maintenance. 

 

 
 
Figure 5.43 Pond 1 showing open water and suspected preferential flow. 

 
 
Figure 5.44 Evidence of preferential flow along Pond 1 edge. 
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Figure 5.45 Deep water evident after draining Pond 1 for weir maintenance. 

 
The drone images in Figure 5.26 also demonstrate how the area of surface water increases 

over time between December and April. This could be caused by the preferential flow 

deepening the pond bed around the edge through scouring, causing unfavourable conditions 

for plant growth. 

Obtaining this drone based data allowed NIW to act accordingly to remediate the effects 

caused by such deeper areas of water. Pond 1 was drained in July so the concrete weir could 

be lowered by 500mm.This would allow the water level within Pond 1 to be reduced to less 

than 250mm as recommended within the design guide. The results of the remediation works 

are detailed further in Chapter 5.3. It was noted that after lowering the water level there was a 

substantial increase in vegetation coverage. 

 

5.6.4 3D Modelling of ICW Pond Vegetation Growth 

 

3D models were created using Zephyr Aerial with footage of the 5 ponds recorded on 3 site 

visits in December 2016, and February and April 2017. The method of deriving a 3D model 

from a drone video is summarised in Chapter 5. Scaling for each 3D model was obtained using 
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measurements of each pond taken with Topcon Total Station. An error margin of <2.5% was 

determined for each 3D model as shown in Table 5.7. The Booking Sheet distances measured 

with a Topcon Total Station are given to 2 decimal places as this method is known to be highly 

accurate. The Zephyr Aerial distances are given to 1 decimal place as their accuracy is thought 

to be lower due to consumer grade GPS.  

The volume of vegetation within the 5 ICW ponds was calculated using the 3D models. Table 

5.7 shows the volumes of each of the ponds taken from the 3D models of each of the 5 ponds 

of 3 site visits in December, February and April. The average vegetation volume per m2 (m3/m2) 

were calculated using the average pond area from the Zephyr analysis and the vegetative area 

from Image Pro analysis. The difference between the vegetation (m3/m2) of the total pond 

area and vegetative area is also shown. Identifying the water surface of the pond is a critical 

issue to calculating a volume of vegetation growth. The data from Table 5.8 is plotted in Figure 

5.46. 

 
Table 5.7 Error of margin between Topcon Survey and Zephyr Aerial Distances. 

Pond 
Number 

Booking Sheet 
Distances 

Zephyr Aerial Distances Error 
(%) 

Average 
Error (%) 

1 Control 
Point 

Horizontal 
Distance 

Control 
Point 

Horizontal 
Distance 

  

CB MH 146.27 CB MH 148.7 1.60 1.62 
T1 108.30 T1 106.5 1.63 

2 Control 
Point 

Horizontal 
Distance 

Control 
Point 

Horizontal 
Distance 

  

CB MH 96.57 CB MH 97.9 1.43 0.93 
Rock 97.16 Rock 96.8 0.42 

3 Control 
Point 

Horizontal 
Distance  

Control 
Point 

Horizontal 
Distance 

  

CB MH 105.91 CB MH 108.39 2.28 2.31 
T1 50.69 T1 49.51 2.34 

4 Control 
Point 

Horizontal 
Distance 

Control 
Point 

Horizontal 
Distance 

  

CB MH 80.51 CB MH 80.90 0.49 0.49 
Rock 78.68 T1 78.29 0.49 

5 Control 
Point 

Horizontal 
Distance 

Control 
Point 

Horizontal 
Distance 

  

CB MH 57.77 CB MH 57.91 0.24 0.24 
Rock 102.231 T1 101.987 0.24 
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Vegetation data for each of the 5 ICW ponds on 3 site visits is plotted in a bar graph in Figure 

5.46. This illustrates that Ponds 1 and 5 showed an increase in vegetation volume between 

December and April. Ponds 2 and 3 showed a decrease in vegetation volume between 

December and April. Pond 4 showed a large decrease in vegetation between December and 

February before increasing again by April. 

 

Table 5.8 Pond Vegetation Volume and Plant Height using 3DF Zephyr Aerial Analysis. 

Pond Site Visit Average 
Zephyr 
Total 
Pond 
Area 
(m2) 

Zephyr 
Volume 
(m3) 

Average 
Zephyr 
vegetation 
(m3/m2) 

Image Pro 
Vegetative 
Area (m2) 

Image Pro 
Vegetation 
(m3/m2) 

Difference 
(%) 

1 December 5493 2350 0.4 4525 0.5 17.6 

February 5493 12073 2.2 5120 2.4 6.8 

April 5493 13367 2.4 3465 3.9 36.9 

2 December 10576 19222 1.8 6122 3.1 42.1 

February 10576 18277 1.7 6638 2.8 37.2 

April 10576 10685 1.0 6974 1.5 34.1 

3 December 9362 22067 2.4 6101 3.6 34.8 

February 9362 19370 2.1 5119 3.8 45.3 

April 9362 3453 0.4 4765 0.7 49.1 

4 December 5973 34473 5.8 5060 6.8 15.3 

February 5973 4274 0.7 4122 1.0 31.0 

April 5973 19375 32.4 3293 5.9 44.9 

5 December 6904 3289 0.5 6481 0.5 6.1 

February 6904 12317 17.8 5562 2.2 19.4 

April 6904 27794 40.3 5825 4.8 15.6 

 

Figure 5.46 illustrates that the volume of vegetation within the total pond and the volume of 

the vegetation within the vegetative area follow similar trends across all ponds over time. 

However, there is a notable difference between the volume of vegetation when calculated 

across the area of the whole pond and the amount of vegetation when calculated across the 

area of identified vegetation within the pond. 
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Figure 5.46 Average vegetation per Total Pond area and Vegetative area. 

 

This difference highlights the importance of factoring in surface water and areas of no 

vegetation within the ponds when calculating accurate vegetation volume over time. It is also 

recommended that surface water level is also factored in. If the surface level of open water is 

considered as the base level for calculating volume within the 3D models, a rise in water depth 

over time may cause the volume of vegetation to appear lower and give an inaccurate 

representation of the actual vegetation growth.  
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The data from Table 5.8 and Figure 6.46 can be correlated with the aerial images in Figures 

5.26 – 5.30 and the data shown in Figures 5.31 – 5.35. Evidence shows that for Pond 1, as the 

area of vegetation decreased, the volume increased. For Pond 2, as the area increased, volume 

decreased. As the area of Pond 3 decreased, volume also decreased. Pond 4 showed little 

correlation between vegetative area and volume. Pond 5 showed an increase in volume with 

an increase in vegetative area.  

The decrease in vegetation volume with an increase in vegetation area as seen in Pond 1 could 

be due to a rise in water levels within the ponds between December and April. This would 

cause the base level of volume calculation to be higher, causing the volume, and subsequent 

plant height, to appear lower. The opposite could be true for Pond 5 where vegetative volume 

increased with a decrease in vegetation area, i.e. vegetation density increased.  

Thus, it is possible to measure the volume of plant growth for an ICW using aerial videography 

and creating a 3D model. However, this is an innovative method and further studies are 

recommended to improve the accuracy of calculations and monitor changes over time within 

the ponds. 

Overall, the findings from this study demonstrate that drones can be used to collect high 

quality aerial data which can be used to create 3D models of each of the ICW ponds. The study 

also proved to be successful in calculating the surface area of the ponds using the modelling 

software, although further consideration is needed when calculating vegetation volume.  

 

5.6.5 Use of Drone Photographs to Differentiate Plant Species 

 

Pond 5 has both the greatest area and volume of vegetation. The planting plan for Pond 5 is 

shown in Figure 5.35. It shows the design to consist of areas or zones of single species and a 

mix of plants. Drone photographs were used to determine how each of the plant species 

became established with respect to its original planting and the flow of wastewater through 

the pond. The drone photograph of Pond 5 taken in July 2017 was analysed using Image Pro to 

determine whether it is possible to differentiate between plant species. Figure 5.47 shows 

Pond 5 from the edge. This shows how difficult it is to estimate vegetation coverage. 
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Figure 5.47 View of Pond 5 from the edge July 2017. 

 

 

Figure 5.48 Pond 5 Aerial Image from July 2017 with ROI within the unhighlighted area. 
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The Pond 5 Region of Interest (ROI) is highlighted in Figure 5.48. Thresholding of the ROI 

identified 4 main classes of vegetation. These are shown in Figure 5.49 as differences in colour. 

Their distribution approximates the design planting plan. The area of each class was 

determined using the Count tool and presented as a percentage (Table 5.9). The total 

calculated area of each class is within 9% of the total vegetative area determined in the earlier 

drone photograph study. Using the planting plan and a walk around survey of Pond 5 each 

colour was denoted a dominant plant species. Figure 5.50 plots the percentage of each Class. 

 

  

Figure 5.49 Species differentiation based on colour thresholding. 

 

Table 5.9 Vegetation Area per Class Colour Threshold in Pond 5. 

Class Colour in 
photograph 

Area (m2) Area (%) Dominant plant 
species 

Class 1 Green 3067 51 Glyceria 
maxima 

Class 2 Dark green 1481 25 Typha latifolia 
Class 3 Brown green 1324 22 Carex riparia 
Class 4 Yellow green 123 2 Weed Grass 
Total Area  5996   
Total Area of 
Vegetation from 
Image Pro Analysis 

 6579   

% Difference  8.87   
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Figure 5.50 Pond 5 plant species in July 2017. 

 

Comparison of the thresholded photograph with the Pond 5 planting plan shows the following: 

 Class 1 with 51% of the total area is Glyceria maxima. Thresholding shows this plant to 

occupy two large blocks and to be established across the entirety of Pond 5.  

 Class 2 with 25% of the total area is Typha latifolia. 

 Class 3 seems to be well mixed across pond, particularly towards the discharge point 

to the left of the image 

 Class 4 was identified as a weed grass during the walk around survey, explaining why it 

is confined to a small area within the pond. 

 

This example demonstrates how drone photographs could be used to provide information not 

available from the edge of the pond. It illustrates how drones can be used to monitor plant and 

species performance within the ponds of an ICW. This information could be used to monitor 

the performance of the wetland in terms of maturity and establishment. It could also be linked 

to wastewater treatment performance. Further work is required over a longer period to better 

colour threshold each of the plant species over seasonal variations. 

 

51

25

22

2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% of Total Pond 5 Vegetation

Ar
ea

Class 4: Yellow Green

Class 3: Brown Green

Class 2: Dark Green

Class 1: Green



191 
 

5.6.6 Drone Study Results Summary 

 

This chapter has shown that drone photographs and video can be used to assess ICW 

vegetation changes with time. This can be expressed in terms of area to showing distribution 

of open water, green healthy vegetation and dieback. This offers new ways of assessing the 

vegetation of an ICW pond not possible from walking around its perimeter. It has been 

demonstrated that the photographs can be further analysed to determine the different plant 

species. The drone images show how issues such as deep water around the edges of Pond 1 

have detrimentally impacted vegetation growth. The use of 3D modelling has been shown to 

offer a potential means of quantifying vegetation growth volume. These methods make it 

possible to better understand the relationships between plant species and the waste water 

treatment performance of the ICW ponds. 
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CHAPTER 6.  DISCUSSION 
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6.1 Introduction 

 

This chapter discusses the results of this research in relation to each of the research objectives 

described in Chapter 1. Each of the objectives are taken in turn so that the results can be 

discussed in terms of how they provide knowledge and understanding.  

 

6.2 Objective 1: Critically review existing knowledge on constructed wetlands, and 

specifically the use of Integrated Constructed Wetlands for the treatment of 

domestic wastewater. 

 

Chapter 2 developed an understanding of the performance of constructed wetland systems. 

The review of literature summarised key design differences between the types of constructed 

wetlands and their various applications (Table 2.3). This information allowed evaluation of 

each as a wastewater treatment method. Despite highlighting gaps in research and 

contradictory theories, the literature review enhanced understanding of the concept behind 

the performance and analysis of integrated constructed wetlands.  

The literature review identified key differences between the common HSSF system and the 

newer ICW concept (Table 2.4). It highlighted that constructed wetlands can be successfully 

used for treating various types of contaminants (Figures 2.9 and 2.10). Chapter 2.10 of the 

literature review identified that key variables such as wetland design, hydraulic considerations, 

wetland location and local climatic conditions influence wastewater treatment performance of 

constructed wetlands in various ways, and to different levels of significance. 

The literature review identified that the performance of constructed wetlands can be 

appraised on a number of factors other than their ability to treat wastewater. These additional 

factors were issues such as land use, odour, social impact, carbon footprint, economic value, 

operation and maintenance costs, and climate change mitigation potential. Figure 2.10 

illustrates the influence of constructed wetland soil and plant composition between seasons 

on the storage of Nitrogen. Figure 2.11 emphasises the need to have a minimum of 4 ponds (or 

cells) when designing an ICW for wastewater treatment.  
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The literature review highlighted that all of these diverse factors are important for the 

appraisal of ICWs as holistic wastewater treatment systems. They should all be considered 

within the design of any future development. This is emphasised in Figure 2.12 which 

illustrates that the treatment of organic wastewater is reliant on various physical, biological 

and chemical processes which occur throughout the whole wetland system. 

Chapter 2 reviewed current guidance documents on the use of Integrated Constructed 

Wetlands treating farmyard soiled and domestic wastewater in Northern Ireland. Differences 

in the treatment of these wastewaters can be seen in Table 2.7. This table highlights that a 

higher retention time is needed for adequate treatment of dairy wastewater than domestic 

wastewater, emphasising that the design principles should be more specific.  

The review found the current ICW guidance to be outdated and inappropriate for the effective 

treatment of domestic wastewater in Northern Ireland. It identified the need to develop new 

guidance and emphasised the need for large-scale studies such as the Stoneyford ICW 

investigated in this research to provide necessary information. 

The aim of the stakeholder engagement session was to determine the attitudes and opinions 

of key stakeholders on the key variables and appraisal contexts that influence the performance 

of an ICW in the treatment of wastewater. The results from the session are available in 

Chapter 5.2.  

The stakeholder session proved to be valuable in relation to this objective. It highlighted 

significant gaps between research and industry practice as shown in the Pyramids of 

Significance. The findings emphasised the importance of stakeholder inclusion from an early 

stage for projects which aim to provide knowledge and understanding to industry.  

It identified areas in which industry lacks knowledge and understanding and helped to identify 

key areas of significance for this research that were subsequently incorporated into this thesis. 

It was apparent from the stakeholder engagement session that there was insufficient 

experience within Northern Ireland on the use of ICWs for domestic wastewater treatment. 

The research carried out at Stoneyford ICW has helped to fill this knowledge gap.  

 

6.3 Objective 2: Determine key variables for assessing Integrated Constructed 

Wetland performance. 
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A part of the literature review compared HSSF and ICW systems in their design, performance, 

and treatment capacities (Tables 2.3 and 2.4). This gave understanding of their wastewater 

treatment abilities so that developers such as NIW can make better informed decisions as to 

which may be more appropriate to meet their specific needs.  

Key variables were identified to assess ICW performance including influent quality, amount 

and type of vegetation, amount and type of soil, ICW design (surface area, water depth, and 

number of ponds), hydraulic load rate and retention time, seasonal and weather changes, and 

the standard of effluent quality required.  

The literature review took a systematic approach to these key variables and compiled a 

structured list of variables that impacts the treatment performance of constructed wetlands as 

shown in Figures 4.2 and 4.4. 

There were key differences between the design of a constructed wetland when investigating 

performance for research purposes and the actual design that is implemented within the 

guidance used for constructed wetland development. For example, Table 2.4 shows that a 

surface area of 5-10m2/pe for a constructed wetland is successful in treating wastewater 

within the literature but 20-40m2 /pe is implemented within the design guide.  

The literature review found that the performance of constructed wetlands in their ability to 

treat wastewater is generally high. But there were many contradictions in the literature as to 

how well they performed under shock loadings (both concentration and flow of influent), 

seasonal variations, and wetland maturity (Table 2.5, Figures 2.8 and 2.9). These are major 

issues that could detrimentally impact the in-service performance of a full-scale ICW and need 

to be appreciated should they be used for the treatment of domestic waste. 

The key variables found in the literature were used to form the basis of the stakeholder 

engagement session. This event confirmed that not all the key variables identified by the 

stakeholders had been identified within the literature. Additional variables such as operation 

and maintenance, ICW design planning were identified by stakeholders as important variables 

that would impact performance (Table 4.2).  

This highlights the difference between academic perception and those responsible for 

designing, building and maintaining the built environment. The stakeholders weighted the key 

variables in order of significance as shown in the Pyramid of Significance in Figure 5.1. This 

gave understanding to how each of the key variables were perceived within industry.  
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It was found that the stakeholder weighting of key variables was different to that found in the 

literature. Whilst the stakeholder engagement session confirmed many of the key variables 

identified within the literature it also highlighted significant knowledge gaps between research 

and industry practice. 

 

6.4 Objective 3: Review the design, construction and operation of a full-scale 

Integrated Constructed Wetland located at Stoneyford to assess its ability to 

treat domestic wastewater.  

 

The Stoneyford Development summarised in Chapter 3 describes and explains the design and 

building of Stoneyford ICW and small-scale Test Rig. The chapter provides information from 

site selection, through the planning process to construction, commissioning, operation and 

maintenance of the working ICW.  

The information summarised in Chapter 3 provides an insight of the many necessary steps 

and processes involved in constructed wetland development. It also identifies unexpected 

issues that may detrimentally impact any future ICW development. These issues include 

vandalism or construction delays due to animal disruption or poor weather.  

Data for the full-scale Stoneyford ICW are represented in Chapter 5.3.  These results illustrate 

the performance of the system in relation to water quality over its first few years. Figure 5.3 

and 5.4 illustrate how the analysis of the four main contaminants i.e. Ammonia, COD, BOD 

and SS change within this relatively short period during which the ICW is developing its ability 

to treat wastewater. 

The results allow comparison of water quality performance between ponds. The data 

indicates that the ponds performed differently against the various contaminants. Generally, 

water quality improved as it left each pond. However, analysis of the water leaving Ponds 1 

and 2 was found to be most variable. In comparison there was relatively little variation in the 

analysis of water leaving Ponds 4 and 5. Pond 3 performed differently for each contaminant.  

Figures 5.5 and 5.6 highlight that it is important to consider retention time when comparing 

the treatment of each pond and that the theoretical 90 day retention time is not always 

practical or true. Indeed, the issue of how long it takes wastewater to flow through the ICW 

network remains an important area that needs further work. 
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This area has been partially assessed by summing the data for each contaminant for each pond 

over the 19 month sampling period. Plotting this summed data allows area under the line 

graphs to be plotted. This gives a simplistic but clear representation of how water quality 

improves as it passes through each pond as shown in Figure 5.7.  

This agrees with the findings from the literature in Figures 2.9 and 2.11 which finds water 

quality to improve with the number of ponds. This simple analysis suggests that a sixth pond at 

Stoneyford may have further improved water quality leaving the ICW.  

Chapter 5.3 also related water quality data to seasonal variations to determine if there were 

differences in performance relating to changes in air temperature, precipitation, humidity and 

wind speed. Analysis found weak correlation between average weekly humidity and ammonia 

levels but as demonstrated in Table 5.3, the relationships between weather and contaminant 

levels show little to no statistical significance.  

This is contradictory to the findings from literature (Mustafa, A., et al., (2009); Forbes, E. G. A., 

et al., (2011)). However, it agrees with the stakeholders’ perception that although weather 

should be considered it is not a significant variable in ICW performance (Figure 5.1).  

 

6.5 Objective 4: Design, build and monitor a small-scale research facility at 

Stoneyford. 

 

The Stoneyford Development chapter describes and explains the development of a small-scale 

Test Rig. This was used as a research facility within the full-scale integrated constructed 

wetland system. Development of the test rig from site selection, design, construction, 

commissioning, operation and maintenance is summarised.  

Information from the test rig was used to compliment data from the full-scale ICW to provide a 

better understanding of the impact of design on treatment performance. The results for the 

small-scale test rig given in Chapter 8 illustrate the performance of a constructed wetland in 

relation to water quality against the key design variables of surface area, water depth and 

wetland type.  

Figures 5.19 – 5.22 illustrate that a difference in surface area between the Design Guidance 

rule of thumb of 20m2 – 40m2/pe has little impact on the wetland’s ability to treat wastewater. 
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Although the larger surface areas were found to be more effective than the smaller surface 

areas, the impact on water quality performance was not significant. 

This evidence could prove beneficial when scaled up to a full-scale system where the impact 

on wastewater treatment may be emphasised. The evidence presented in Chapter 5.5 agrees 

with the findings from Carty, A., et al., (2008) that ICWs should be designed with a surface area 

of between 20m2 – 40m2 /pe, but the results indicate that more emphasis should be placed on 

the benefits of the larger scale system.  

With regard to water depth, Figure 5.23 illustrates that varying water depth between 50mm 

to 250mm had limited impact on the wetlands ability to treat wastewater. However, the 

shallower water depth of 50mm was more effective.  

The test rig allowed investigation into the impacts of decreasing the water level of a HSSF from 

surface level 0mm to 200mm beneath the surface. Figure 5.24 demonstrates that changing the 

water level from 0mm t0 200mm beneath the surface had little effect on BOD or ammonia 

treatment. However there was a significant correlation between water levels within the HSSF 

and the levels of suspended solids and COD. This result allows for the recommendation that 

keeping the water level as close to the surface as possible (0mm beneath the surface) would 

provide the most effective treatment of domestic wastewater in HSSF systems in Northern 

Ireland.  

 

6.6 Objective 5: Offer advice to a revised guidance document for future Integrated 

Constructed Wetland provision for the treatment of domestic wastewater in 

Northern Ireland.  

 

The literature review highlighted that ICW design has an influence on its performance in 

various ways. It is important that the appropriate constructed wetland design is selected for 

use in a specific location or for treating a specific wastewater source (Table 2.3). Appropriate 

selection will ensure that optimum performance can be achieved. Differences in constructed 

wetland design as shown in Table 2.4 highlighted the need for further investigations which 

were carried out in this research. Investigating such design parameters of both HSSF and ICW 

systems allowed for informed advice to be given on the appropriate options for treating 

domestic wastewater.   
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A review of the currently available guidance documents was carried out to evaluate their 

suitability for the implementation of ICWs for the treatment of domestic wastewater in 

Northern Ireland. It was concluded that the information and research within the most 

appropriate document for Northern Ireland was outdated. 

There was the need for better guidance as the use of a combined guidance document for both 

agricultural and domestic waste was inefficient and unsuitable for a natural system that is not 

only site specific, but also specific to each individual application.  

Chapter 3 summarised the steps involved in the construction of Stoneyford ICW planning 

through to commissioning. It includes issues that impacted the works such as poor weather 

conditions, disrupted screening, late planting and plant disruption.  

Additional issues during the first few years at a functioning ICW also need to be appreciated. 

For example, an unexpectedly dry winter and spring during the sampling period between 2016 

and 2017 influenced water levels with some starting to dry out (Figure 5.11). This meant that 

wastewater started to take preferential flow through the areas of deeper water and was not 

being treated adequately by the processes within the plants and soil structure. 

This type of additional information learned from the Stoneyford ICW is not considered in the 

current guidance and as a result, NIW were not aware of the potential measures to mitigate 

impacts. Future guidance needs to take into consideration the different issues that occurred at 

Stoneyford as they have the potential to detrimentally impact performance of the ICW. This 

will advise future ICW developers on suitable mitigation approaches.  

Another unexpected issue was that of wildlife suspected of disrupting pond beds and 

increasing suspended solid and ammonia levels in ponds 4 and 5 as described in Chapter 5.6. 

This was unexpected as the holistic design approach of Stoneyford ICW was to actively 

encourage wildlife in Pond 5 with the construction of an island surrounded by deeper water in 

which the plants would not grow. There was evidence of birds in the open water areas that 

developed in Pond 1 suggesting that such areas of open water do encourage wildlife to the 

site.  

Chapter 5 suggests that bird-life should discouraged from the Ponds of an ICW as they are 

suspected of detrimentally impacting the wastewater treatment process. Design features of 

islands and open water in these ponds are not recommended as they need to be fully 

vegetated for optimum treatment.  
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Based on Stoneyford it is expected that these issues are likely to occur in any future 

developments and should be reconsidered within a revised guidance document. It is suggested 

that additional non-treatment ponds and wildlife features are implemented within the 

landscaping of an ICW site and kept separate from the treatment works. 

Chapter 5 highlights structural issues that should be considered within a new guidance 

document. Very important is the evenness of the pond floor. Pond 1 developed areas of open 

water and during the dry winter it was apparent that the water depth was not uniform. A 

survey of the Pond 1 floor identified areas of deeper water corresponding to open water.  

As water depth is critical to plant growth this direct evidence illustrates the need for close 

controls when constructing what may be considered a natural landscape in contrast to hard 

engineering practices such as concrete or artificial linings. Site investigation prior to 

construction needs to consider the historical use of the land. For example, the water course 

that was found to cut through the location of Pond 1.  

The water quality data for the full-scale system highlights that treatment within the ICW could 

be cyclical during its earlier years and take time to stabilise and reach equilibrium (Figures 5.3 

– 5.6). The investigations reported in this thesis only account for the early life of the ICW. 

Research needs to continue to determine how Stoneyford ICW continues to mature and 

reaches equilibrium.  

This probably requires an additional 3 to 5 year study to better understand whether early life 

cyclic events continue or if the ICW becomes stable. Based on the evidence in Chapter 5.3, a 

period of at least one year is recommended from the completion of the ICW development to 

the commencement of wastewater treatment to allow for the system to establish and settle. 

Data from the small-scale test rig found each test bed performed differently in the removal of 

contaminants. T1-T3 performed better for BOD, suspended solids, and ammonia removal while 

T4 and T5 performed better for COD (Figure 5.18). Results highlighted that a change in surface 

area between 40m2 – 80m2 had little impact on the wetlands ability to treat wastewater 

although the larger surface areas did tend to be more effective. Based on the evidence 

provided in Figure 5.19 – 5.22, a larger area is more effective. Depending on the influent 

concentration and loading a smaller area can also be effective.  
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Results from both the full scale and small scale systems emphasise that current design 

parameters could be made more concise, with the importance of having a larger surface area 

and shallower water depth being more appropriately explained. 

With respect to this objective, the research presented in this thesis not only highlights 

discrepancies or inaccuracies within the current guidance, but also identifies new issues which 

are likely to reoccur in future ICW developments. This needs to be included in the guidance 

when revised.  

 

6.7 Objective 6: Investigate the use of drones as a method of monitoring plant 

performance and identify links to wastewater treatment performance. 

 

Chapter 5.6 considered how drones can be used to monitor ICW plant performance. The 

chapter considered data over a 7 month period from winter to summer. It was possible to do a 

complete drone study of Stoneyford in approximately 30 minutes. This study clearly found that 

drones can provide a new data-set that can help explain the relationship between plant 

performance and overall performance of the ICW. It was able to identify and quantify factors 

not possible by walking around each pond. 

Photographic and video images can be used as the basis of 2D and 3D investigations as shown 

in Figures 5.26 – 5.30 and Figures 4.17 – 4.21.  Figures 5.36 – 5.40 illustrate how the amount of 

surface water, healthy vegetation and level of die back changed during the 7 month study 

period. Analysis of these images was able to quantify the amount of each condition as shown 

in Tables 5.4 and 5.5. Figure 5.46 shows the potential for calculating the volume of vegetation 

using 3D modelling software 

Figures 5.49 and 5.50 demonstrate how drone images can be used to monitor differences 

between species distributions within the wetland. This data can be correlated to wastewater 

treatment performance.  

This new type of information can be used as a method of monitoring the performance of the 

ICW ponds over time in terms of vegetation growth and die back, and species population. This 

new data set is not available at ground level and will provide developers such as NIW with a 

means of highlighting problems such as open water described in Chapter 5 and allow prompt 

remedial action to be taken. 



202 
 

6.8 Overall Discussion of Results 

 

The results of the studies described in Chapter 5 have allowed the aims and objectives of this 

research to be achieved. The main findings and observations from these studies are now 

discussed: 

The stakeholder engagement identified limitations with available literature, including a lack of 

consideration for planning and development regulations as well as health and safety concerns 

of the local community. Throughout the literature review, much of the available literature 

focused on the performance of constructed wetlands and their ability to treat wastewater. 

ICWs however are designed and promoted on their holistic sustainable concept which is 

inclusive of social, economic and environmental considerations. However, it is noted that there 

were no community representatives present to provide their views.  

It would be beneficial for future developments to include all key stakeholders, including 

planners, designers, regulators, engineers, ecologists and community representatives, 

throughout the planning and design process so that a more holistic approach to ICW 

development can be obtained. This would allow for the development of a system that 

communities can feel they have contributed to, and may prevent issues caused by vandalism, 

poor plant development, flooding and clogging described in Chapters 3 and 5. 

The full-scale ICW system at Stoneyford demonstrated evidence to suggest that Ammonia and 

COD performances are impacted over time, confirming the results of studies conducted by 

Mustafa, A., et al., (2009). The results also suggested that BOD and SS were not impacted over 

time which is contradictory to findings by Kayranli, B., et al., (2009).  

Results from the full-scale ICW also provided evidence which suggests that performance of 

ponds 3, 4 and 5 in treating Ammonia may be cyclical with reduced performance occurring at 

similar times each year (winter period). This confirms previous studies by Mustafa, A., et al., 

(2009) who found poorer ammonia removal in winter months at a similar ICW in the 

Annesvalley Catchment in Ireland. However, when the water quality results were analysed 

against weather conditions in Table XX, no statistical significance was identified. By using a 

drone to monitor and measure plant performance as described in Chapter 5, the observation 

could be made that plant growth and density is poorer during winter months. This provides 

sufficient evidence to suggest that the treatment of ammonia within a constructed wetland is 

attributed to by the plants performance.  
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Results from the Test Rig indicated that a change in water depth between 50mm – 250mm had 

little impact on the wetlands ability to treat wastewater. It was noted however that the 

shallower water depth of 50mm did tend to be more effective than the deeper ponds but that 

differences were marginal. Observations from Pond 1 within the ICW also allowed for a better 

understanding of how water depth in the pond can have an impact on wastewater treatment. 

As described in Chapter 5.4 the water depth in Pond 1 became uneven, causing areas of open 

water where plants were unable to grow. Once the pond was drained and the water levels 

lowered to a suitable depth of less than 250mm, the vegetation flourished and open areas of 

water were covered.  

As noted above, the plants have an impact on how effective the wetland is in treating 

wastewater and thus, it can be concluded that an increase in water depth could potentially 

have a negative impact on ICW treatment performance. This confirm research with Cui, L., et 

al., (2012) who found that a greater water depth had a negative impact on plant growth. The 

evidence from the results would also suggest that on a larger scale, the differences in 

wastewater treatment between water depths of 50mm – 250mm within the test rig would be 

emphasised. 

A significant finding from this research has been the successful application of a drone to 

measure and monitor plant performance within an ICW. This method makes it possible to 

better understand the relationships between plants and the wastewater treatment 

performance of the ICW ponds as identified through the results and observations of the full-

scale ICW and test rig. 
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CHAPTER 7. CONCLUSION 
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7.1 Introduction 

The aim of this research was to improve understanding of Stoneyford ICW early life 

performance for the treatment of domestic wastewater in Northern Ireland. This chapter 

provides the conclusions to the research by highlighting the key findings of the research. 

 

7.2 Significant variables that impact the treatment performance of an ICW for 

domestic wastewater 

 

This research has considered the early life performance of a full-scale ICW for the treatment of 

domestic wastewater. Review of the relevant literature, stakeholder engagement and analysis 

of data during this early life period has found that there are a wide number of significant 

variables. The variables identified include water depth, soil characteristics and depth, pond 

geometry, hydraulic retention time, hydraulic loading rate, climate, plants, planning, operation 

and maintenance. An ICW by nature is a holistic concept, reliant on these identified factors 

ranging from design, through to daily operation. The Stoneyford ICW has identified how all 

these factors need to be considered in this holistic framework. Although the impacts of the 

factors of water depth and plants have been highlighted throughout the discussion of this 

research, it is concluded that all variables need to be considered to ensure successful 

operation of the ICW. 

 

7.3 The design of an ICW can be improved to optimise the performance of 

domestic wastewater treatment 

 

There is limited experience with the use of ICWs for the treatment of domestic wastewater 

with most of the design principles based on the treatment of agricultural wastes. Stoneyford is 

the first full-scale ICW for the treatment of domestic wastewater in Northern Ireland. It has 

allowed observations and provided data which will optimise the design and decision making 

process for future ICW installations. The following conclusions should be utilised to improve 

the design of future ICWs in Northern Ireland; 
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 Wetland ponds are currently designed to a minimum of 20m2 pe with a water depth of less 

than 250mm. Evidence from Stoneyford ICW suggests that ICW performance is more 

effective when surface area is increased to 40m2 pe with a water depth of not less than 

50mm. 

 Planting of young wetland species should be carried out early in the planting season to 

allow for adequate growing and establishment; 

 Influent flow into the wetland should be withheld until the wetland is in a state of full 

plant growth to prevent the drowning or overburdening of young or weak species; 

 Disturbances to the ponds once planted should be kept to a minimum. If disturbances are 

necessary, it is recommended that works are carried out during autumn and winter 

months to minimise impact on plant species; 

 Care should be taken during initial construction and during any subsequent works to 

ensure the water depth of the pond remains constant; 

 Care should be taken to ensure the beds of the ponds are compacted to avoid later 

differential settlement that may cause areas of deeper water; 

 Influent flow into Pond 1 should be kept reasonably constant to reduce the effects of 

surges on ICW performance; 

 An additional source of influent should be considered during periods of dry weather, so as 

to reduce the complications of clogging. Potential sources could include local stream 

water, clean water or recycling of discharge from the system. 

 

7.4 Relationship between plants and wastewater treatment 

 

Plant performance changed significantly over the test period with significant die back 

demonstrated during the winter months. Treatment performance was reduced during winter 

months, especially with regards to ammonia treatment. Correlating treatment performance 

with weather data found that changes in weather had little significant impact on wastewater 

treatment within the ICW.  

It is concluded that wastewater treatment performance is dependent on plant performance. 

Evidence suggests higher vegetation density will allow for improved treatment performance. 

Conditions that are unfavourable for sustaining vegetation growth that create areas of open 
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water are to be avoided as they allow the wastewater to flow through the pond and not be 

fully treated. 

 

7.5 Effect on ICW by environmental, ecological and seasonal factors 

 

Evidence suggests that the ICW at Stoneyford was affected by environmental, ecological and 

seasonal factors. For example, dry periods caused wastewater to flow through areas of deeper 

water as opposed to the plant and soil structure. Wildlife and animals are suspected of causing 

disturbances to plants and sediments. The plant species were impacted by seasonal factors, 

showing substantial die back during winter months and significant regrowth over summer 

months. 

However, there was little evidence to suggest that the ability of the ICW to treat wastewater 

was significantly affected by these environmental, ecological and seasonal factors. There was 

no significant correlation between water quality and weather changes. Instead, wastewater 

treatment was suggested to be cyclical or impacted by plant establishment and maturity 

within the ponds. 

 

7.6 Performance of plant growth can be better monitored using a drone 
 

The performance of plant growth and its distribution can be better monitored using drones 

and analysis of captured imagery. Using aerial imagery allows for an accurate analysis of plant 

growth, density and species monitoring within each of the ponds. This is of particular benefit 

to those wishing to use plant performance as a method of predicting wastewater treatment 

capacity and/or proactively identify early issues that may reduce overall wetland performance. 

 

7.7 Ammonia removal can be directly related to plant performance within an ICW 

 

Ammonia removal was poor during the winter months between October and February, but 

results indicated that this was not directly related to weather conditions. Plant performance was 

also poor in winter months as demonstrated through analysis from the drone study. Thus 
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ammonia removal can be directly linked to the poor performance of the plants as a result of 

climatic and seasonal changes, but not directly related to weather. 

 

7.8 ICWs a viable alternative to traditional wastewater treatment works in treating 

domestic sewage in Northern Ireland 

 

ICWs are a viable alternative to traditional wastewater treatment works in treating domestic 

sewage in Northern Ireland. Stoneyford ICW has been shown to successfully treat domestic 

wastewater during its early years. Evidence suggests that performance will improve as the 

wetland continues to mature. Use of Stoneyford ICW as a full-scale trial has brought 

substantial benefits to the wastewater treatment industry in terms of knowledge and 

understanding, providing an excellent example from which to learn and improve future 

developments. 
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CHAPTER 8. RECOMMENDATIONS FOR 
FUTURE WORK 
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8.1 Introduction 
 

This research investigated the early life performance of Stoneyford Integrated Constructed 

Wetland for the treatment of domestic wastewater. The findings within this thesis have 

highlighted the need for further research in the following areas: 

 

 The need to continue monitoring Stoneyford ICW to better understand how it matures 

as a means of treating domestic wastewater; 

 

 A Delphi study of stakeholders from the whole of the UK and Ireland; 

 

 Develop the findings of the small-scale test rig into larger scale systems to improve 

understanding of key design parameters;  

 

 Continue developing the use of drones to monitor and quantify plant performance. 

Particular emphasis should be placed on: 

- Improving estimation of plant growth using 3D modelling;  

- Correlate plant performance with wastewater treatment performance;  

- Develop a catalogue of signatures for image analysis of individual wetland 

species across seasonal variations. 

 

 Develop the observation of the impact of wildlife on ICW treatment performance 

through ecology and biodiversity surveys and determine a correlation between wildlife 

activity and water quality; 

 

 The findings of this research should be used to improve guidance relating to the use of 

integrated constructed wetlands for the treatment of domestic wastewater in 

Northern Ireland. 

 

 

  



211 
 

REFERENCES 

Allen, C.R., Stein, O.R., Hook, P.B., Burr, M.D., Parker, A.E. and Hafla, E.C. (2013) Temperature, 

plant species and residence time effects on nitrogen removal in model treatment wetlands. 

Water Science and Technology, 68 (11), 2337-2343. 

Allen, W.C., Hook, P.B., Biederman, J.A. and Stein, O.R. (2002) Temperature and wetland plant 

species effects on wastewater treatment and root zone oxidation. Journal of environmental 

quality, 31 (3), 1010-1016. 

Alley, B.L., Willis, B., Rodgers, J. and Castle, J.W. (2013) Water depths and treatment 

performance of pilot-scale free water surface constructed wetland treatment systems for 

simulated fresh oilfield produced water. Ecological Engineering, 61 190-199. 

Ayaz, S.C. (2008) Post treatment and reuse of tertiary treated wastewater by constructed 

wetlands. Desalination 226, 249-255. 

Barbera, A.C., Borin, M., Cirelli, G.L., Toscano, A. and Maucieri, C. (2015) Comparison of carbon 

balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant 

species. Environmental science and pollution research international, 22 (4), 2372-2383.  

Barbera, A.C., Borin, M., Ioppolo, A., Cirelli, G.L. and Maucieri, C. (2014) Carbon dioxide 

emissions from horizontal sub-surface constructed wetlands in the Mediterranean Basin. 

Ecological Engineering, 64 57-61.  

Becerra-Jurado, G., Callanan, M., Gioria, M., Baars, J., Harrington, R. and Kelly-Quinn, M. (2009) 

Comparison of macroinvertebrate community structure and driving environmental factors in 

natural and wastewater treatment ponds. Hydrobiologia, 634 (1), 153-165.  

Becerra-Jurado, G., Johnson, J., Feeley, H., Harrington, R. and Kelly-Quinn, M. (2010) The 

potential of integrated constructed wetlands (ICWs) to enhance macroinvertebrate diversity in 

agricultural landscapes. Wetlands, 30 (3), 393-404.  

Becerra-Jurado, G., Harrington, R. and Kelly-Quinn, M. (2011) A Review of the Potential of 

Surface Flow Constructed Wetlands to Enhance Macroinvertebrate Diversity in Agricultural 



212 
 

Landscapes with Particular Reference to Integrated Constructed Wetland (ICW), Hydrobiologia, 

(692), pp. 121-130. 

Becerra-Jurado, G., Harrington, R. and Kelly-Quinn, M. (2012) A review of the potential of 

surface flow constructed wetlands to enhance macroinvertebrate diversity in agricultural 

landscapes with particular reference to Integrated Constructed Wetlands (ICWs). 

Hydrobiologia, 692 (1), 121-130.  

Becerra-Jurado, G. and Quinn, M.K., 2012. Farm ponds and integrated constructed wetlands 

(ICWs): A case study in Ireland. Nova Science Publishers, Inc. 

Beebe, D.A., Castle, J.W., Molz, F.J. and Rodgers Jr., J.H. (2014) Effects of evapotranspiration on 

treatment performance in constructed wetlands: Experimental studies and modeling. 

Ecological Engineering, 71 394-400.  

Boutilier, L., Jamieson, R., Gordon, R., Lake, C. and Hart, W. (2009) Adsorption, sedimentation, 

and inactivation of E. coli within wastewater treatment wetlands. Available from: 

http://www.sciencedirect.com/science/article/pii/S0043135409004266  

Braeckevelt, M., Rokadia, H., Imfeld, G., Stelzer, N., Paschke, H., Kuschk, P., Kästner, M., 

Richnow, H., and Weber, S. (2007a) Assessment of in situ biodegradation of 

monochlorobenzene in contaminated groundwater treated in a constructed wetland. 

Environmental Pollution, 148 (2), 428-437.  

Braeckevelt, M., Rokadia, H., Mirschel, G., Weber, S., Imfeld, G., Stelzer, N., Kuschk, P., Kästner, 

M. and Richnow, H.H. (2007b) Biodegradation of chlorobenzene in a constructed wetland 

treating contaminated groundwater. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

34548250454&partnerID=40&md5=6fd1d4dcd88095498c9e2a3430a27dc8 [Accessed 30 

October 2014].  

Brisson, J. and Chazarenc, F. (2009) Maximizing pollutant removal in constructed wetlands: 

Should we pay more attention to macrophyte species selection? Science of the Total 

Environment, 407 (13), 3923-3930. 

Britto, D.T. and Kronzucker, H.J., (2002) NH4+ toxicity in higher plants: a critical review. Journal 

of Plant Physiology 159, 567–584. 



213 
 

Brix, H. (1987) Treatment of Wastewater in the Rhizosphere of Wetland Plants - The Root Zone 

Method. 19 (107). 

Brix, H. (1997) Do macrophytes play a role in constructed treatment wetlands? Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

0030609421&partnerID=40&md5=2ad994377d59cde2da21cdb4a66ae2d8 [Accessed 25 

February 2015]. 

Brundtland Report (1987) Report of the World Commission on Environment and 

Development: Our Common Future. Available at: http://www.un-documents.net/our-

common-future.pdf [Accessed: 29.01.2018] 

Burgoon, P.S., Kadlec, R.H. and Henderson, M. (1999) Treatment of potato processing 

wastewater with engineered natural systems. Sao Paulo, Braz ed. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

0032858421&partnerID=40&md5=0941c75912d47620028a72822ee6566d [Accessed 30 

October 2014].  

Burnett-Hall, R. and Jones, B. (2012) Burnett-Hall on Environmental Law. 3rd ed. Sweet & 

Maxwell. 

Çakir, R., Gidirislioglu, A. and Çebi, U. (2015) A study on the effects of different hydraulic 

loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed 

wetlands used for treatment of domestic wastewaters. Journal of environmental management, 

164 121-128.  

Calheiros, C.S.C., Rangel, A.O.S.S., Castro, P.M.L., (2009) Treatment of industrial wastewater 

with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. 

Bioresource Technology 100, 3205e3213. 

Carrer, G.M., Bonato, M., Smania, D., Barausse, A., Comis, C. and Palmeri, L. (2011) Beneficial 

effects on water management of simple hydraulic structures in wetland systems: The 

Vallevecchia case study, Italy. Water Science and Technology, 64 (1), 220-227.  

Carty, A., Scholz, M., Heal, K., Gouriveau, F. and Mustafa, A. (2008) The universal design, 

operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate 

climates. Bioresource technology, 99 (15), 6780-6792.  



214 
 

Chang, C., Di Giovanni, K., Zhang, G., Yang, X. and You, S.-. (2015) Sustainability. Water 

Environment Research, 87 (10), 1208-1255.  

Chen, J., Liu, Y., Su, H., Ying, G., Liu, F., Liu, S., He, L., Chen, Z., Yang, Y., and Chen, F.-. (2014) 

Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated 

constructed wetland. Environmental Science and Pollution Research. 

Chen, J., Ying, G.-., Wei, X.-., Liu, Y.-., Liu, S.-., Hu, L.-., He, L.-., Chen, Z.-., Chen, F.-. and Yang, 

Y.-. (2016) Removal of antibiotics and antibiotic resistance genes from domestic sewage by 

constructed wetlands: Effect of flow configuration and plant species. Science of the Total 

Environment, 571 974-982. 

Choi, Y., Kim, L. and Zoh, K. (2016) Removal characteristics and mechanism of antibiotics using 

constructed wetlands. Ecological Engineering, 91 85-92. 

Collins, A.R. and Gillies, N. (2014) Constructed Wetland Treatment of Nitrates: Removal 

Effectiveness and Cost Efficiency. Journal of the American Water Resources Association, 50 (4), 

898-908.  

Cooper, P.F., Job, G.D., Green, M.B. and Shutes, R.B.E. (1996) Reed Beds and Constructed 

Wetlands for Wastewater Treatment. Medmenham, UK: WRC Press.  

Cooper, P. (1999) A review of the design and performance of vertical-flow and hybrid reed bed 

treatment systems. Water Science and Technology, 40 (3), 1-9.  

Corbella, C. and Puigagut, J. (2015) Effect of primary treatment and organic loading on 

methane emissions from horizontal subsurface flow constructed wetlands treating urban 

wastewater. Ecological Engineering, 80 79-84.  

Cui, F., Zhou, Q., Wang, Y. and Zhao, Y.Q. (2011) Application of constructed wetland for urban 

lake water purification: Trial of Xing-qing Lake in Xi'an city, China. Journal of Environmental 

Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 46 

(7), 795-799.  

Cui, L., Zhang, Y., Zhang, M., Li, W., Zhao, X., Li, S. and Wang, Y. (2012) Identification and 

modelling the HRT distribution in subsurface constructed wetland. Journal of Environmental 

Monitoring, 14 (11), 3037-3044.  



215 
 

DAERA-NI (2016a) Regulating Sewage Discharges. Available from: https://www.daera-

ni.gov.uk/articles/regulating-sewage-discharges [Accessed 19/12/2016]. 

Dawson, C., (2009) Introduction to Research Methods: A Practical Guide for Anyone 

Undertaking a Research Project. 4th Edition. Oxford, UK. 

DEFRA (2002) Sewage Treatment in the UK. Available from: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69582/pb66

55-uk-sewage-treatment-020424.pdf [Accessed 19/12/2016]. 

DEHLG (2010) Guidance Document for Farmyard Soiled Water and Domestic Wastewater 

Applications. Available from: http://www.housing.gov.ie/sites/default/files/migrated-

files/en/Publications/Environment/Water/FileDownLoad,24931,en.pdf [Accessed 10/07/2017]. 

De Klein, J.J.M. and Van der Werf, A.K. (2014) Balancing carbon sequestration and GHG 

emissions in a constructed wetland. Ecological Engineering, 66 36-42.  

Denny, P. (1997) Implementation of constructed wetlands in developing countries. Available 

from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

0030609419&partnerID=40&md5=d9d384751ff40f1935f144e91d5b79c8 [Accessed 30 October 

2014].  

Dimuro, J.L., Guertin, F.M., Helling, R.K., Perkins, J.L. and Romer, S. (2014) A financial and 

environmental analysis of constructed wetlands for industrial wastewater treatment. Journal 

of Industrial Ecology, 18 (5), 631-640.  

Dong, X. and Reddy, G.B. (2010) Nutrient removal and bacterial communities in swine 

wastewater lagoon and constructed wetlands. Journal of Environmental Science and Health - 

Part A Toxic/Hazardous Substances and Environmental Engineering, 45 (12), 1526-1535.  

Dong, Y., Kayranli, B., Scholz, M. and Harrington, R. (2013) Nutrient release from integrated 

constructed wetlands sediment receiving farmyard run-off and domestic wastewater. Water 

and Environment Journal, 27 (4), 439-452.  

Dong, Y., Scholz, M. and Harrington, R. (2012) Statistical modeling of contaminants removal in 

mature integrated constructed wetland sediments. Journal of Environmental Engineering 

(United States), 138 (10), 1009-1017.  



216 
 

Dong, Y., Scholz, M. and Mackenzie, S. (2013) Performance evaluation of representative 

Wildfowl & Wetlands Trust constructed wetlands treating sewage. Water and Environment 

Journal, 27 (3), 317-327.  

Dong, Y., Wiliński, P. R., Dzakpasu, M., and Scholz, M. (2011) Impact of Hydraulic Loading Rate 

and Season on Water Contaminant Reductions within Integrated Constructed Wetlands, 

Wetlands, (31), pp. 499-509. 

Doody, D., Harrington, R., Johnson, M., Hofmann, O. and McEntee, D. (2009) Sewerage 

treatment in an integrated constructed wetland. Proceedings of the Institution of Civil 

Engineers: Municipal Engineer, 162 (4), 199-205.  

Dunne, E.J., Coveney, M.F., Hoge, V.R., Conrow, R., Naleway, R., Lowe, E.F., Battoe, L.E. and 

Wang, Y. (2015) Phosphorus removal performance of a large-scale constructed treatment 

wetland receiving eutrophic lake water. Ecological Engineering, 79 132-142.  

Dunne, E.J., Culleton, N., O'Donovan, G., Harrington, R. and Olsen, A.E. (2005) An integrated 

constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water. 

Ecological Engineering, 24 (3), 221-234.  

Dunne, E.J., Culleton, N., O'Donovan, G. and Harrington, R., (2005) Constructed wetlands to 

retain contaminants and nutrients, specifically phosphorus from farmyard dirty water in 

Southeast Ireland. Wageningen Academic Publishers. 

Dzakpasu, M., Hofmann, O., Scholz, M., Harrington, R., Jordan, S.N. and McCarthy, V. (2011) 

Nitrogen removal in an integrated constructed wetland treating domestic wastewater. Journal 

of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental 

Engineering, 46 (7), 742-750.  

Dzakpasu, M., Scholz, M., Harrington, R., Jordan, S.N. and McCarthy, V. (2012) Characterising 

infiltration and contaminant migration beneath earthen-lined integrated constructed 

wetlands. Ecological Engineering, 41 41-51.  

Dzakpasu, M., Scholz, M., Harrington, R., McCarthy, V. and Jordan, S., (2014) Groundwater 

quality impacts from a full-scale integrated constructed wetland. Groundwater Monitoring and 

Remediation, 34(3), pp. 51-64. 



217 
 

Dzakpasu, M., Scholz, M., McCarthy, V. and Jordan, S.N. (2014) Assessment of long-term 

phosphorus retention in an integrated constructed wetland treating domestic wastewater. 

Environmental Science and Pollution Research. 

Ellis, J.B., Shutes, R.B.E. and Revitt, D.M. (2003) Guidance Manual for Constructed Wetlands: 

R&D Technical Report. Bristol: Environment Agency. (P2-159/TR2).  

Elsaesser, D., Blankenberg, A.G.B., Geist, A., Mæhlum, T. and Schulz, R. (2011) Assessing the 

influence of vegetation on reduction of pesticide concentration in experimental surface flow 

constructed wetlands: Application of the toxic units approach. Ecological Engineering, 37 (6), 

955-962.  

European Parliament (2000) Directive 2000/60/EC of the European Parliament and of the 

Council of 23 October 2000 establishing a framework for Community action in the field of water 

policy. Available at: http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-

bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF [Accessed: 29.01.17] 

Everard, M., Harrington, R. and McInnes, R.J. (2012) Facilitating implementation of landscape-

scale water management: The integrated constructed wetland concept. Ecosystem Services, 2 

27-37.  

Everard, M. and McInnes, R. (2013) Systemic solutions for multi-benefit water and 

environmental management. Science of the Total Environment, 461-462 170-179.  

Fester, T., Giebler, J., Wick, L.Y., Schlosser, D. and Kästner, M. (2014) Plant-microbe 

interactions as drivers of ecosystem functions relevant for the biodegradation of organic 

contaminants. Current opinion in biotechnology, 27 168-175.  

Forbes, E.G.A., Foy, R.H., Mulholland, M.V. and Brettell, J.L. (2011) Performance of a 

constructed wetland for treating farm-yard dirty water. Water Science and Technology, 64 (1), 

22-28. 

Gadi, V.K., Tang, Y.-., Das, A., Monga, C., Garg, A., Berretta, C. and Sahoo, L. (2017) Spatial and 

temporal variation of hydraulic conductivity and vegetation growth in green infrastructures 

using infiltrometer and visual technique. Catena, 155 20-29.  



218 
 

García, J., Aguirre, P., Barragán, J., Mujeriego, R., Matamoros, V. and Bayona, J.M. (2005) Effect 

of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. 

Ecological Engineering, 25 (4), 405-418. 

García, J., Chiva, J., Aguirre, P., Álvarez, E., Sierra, J.P. and Mujeriego, R. (2004) Hydraulic 

behaviour of horizontal subsurface flow constructed wetlands with different aspect ratio and 

granular medium size. Ecological Engineering, 23 (3), 177-187.  

García-Lledó, A., Ruiz-Rueda, O., Vilar-Sanz, A., Sala, L. and Bañeras, L. (2011) Nitrogen removal 

efficiencies in a free water surface constructed wetland in relation to plant coverage. 

Ecological Engineering, 37 (5), 678-684.  

Ge, Y., Zhang, C., Jiang, Y., Yue, C., Jiang, Q., Min, H., Fan, H., Zeng, Q. and Chang, J. (2011) Soil 

Microbial Abundances and Enzyme Activities in Different Rhizospheres in an Integrated 

Vertical Flow Constructed Wetland. Clean - Soil, Air, Water, 39 (3), 206-211.  

Gorra, R., Freppaz, M., Zanini, E. and Scalenghe, R. (2014) Mountain dairy wastewater 

treatment with the use of an 'irregularly shaped' constructed wetland (Aosta Valley, Italy). 

Ecological Engineering, 73 176-183.  

Grisey, E., Laffray, X., Contoz, O., Cavalli, E., Mudry, J. and Aleya, L. (2012) The bioaccumulation 

performance of reeds and cattails in a constructed treatment wetland for removal of heavy 

metals in landfill leachate treatment (Etueffont, France). Water, air, and soil pollution, 223 (4), 

1723-1741.  

Guo, Y., Liu, Y., Zeng, G., Hu, X., Xu, W., Liu, Y., Liu, S., Sun, H., Ye, J., and Huang, H., (2014) An 

integrated treatment of domestic wastewater using sequencing batch biofilm reactor 

combined with vertical flow constructed wetland and its artificial neural network simulation 

study. Ecological Engineering, 64 18-26.  

Harrington, A., (2005) The relationship between plant vigour and ammonium concentrations in 

surface waters of constructed wetlands used to treat meat industry wastewaters in Ireland. 

Wageningen Academic Publishers. 

Harrington, C. and Scholz, M. (2010) Assessment of pre-digested piggery wastewater 

treatment operations with surface flow integrated constructed wetland systems. Bioresource 

technology, 101 (20), 7713-7723.  



219 
 

Harrington, C., Scholz, M., Culleton, N. and Lawlor, P.G., (2011) Meso-scale systems used for 

the examination of different integrated constructed wetland operations. Journal of 

Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental 

Engineering, 46(7), pp. 783-788. 

Harrington, C., Scholz, M., Culleton, N. and Lawlor, P.G. (2012) The use of integrated 

constructed wetlands (ICW) for the treatment of separated swine wastewaters. Hydrobiologia, 

692 (1), 111-119.  

Harrington, R., Carroll, P., Carty, A.H., Keohane, J. and Ryder, C., (2007) Integrated constructed 

wetlands: Concept, design, site evaluation and performance. International Journal of Water, 

3(3), pp. 243-256. 

Harrington, R., Carroll, P., Cook, S., Harrington, C., Scholz, M. and McInnes, R.J., (2011) 

Integrated constructed wetlands: Water management as a land-use issue, implementing the 

'Ecosystem Approach'. Water Science and Technology, 63(12), pp. 2929-2937. 

Harrington, R., Dunne, E. J., Carroll, P., Keohane, J., and Ryder, C. (2005) The concept, design 

and performance of integrated constructed wetlands for the treatment of farmyard dirty 

water. P. 179-88. In E.J. Dunne, K. R. Reddy, and O. T. Carton (eds.) Nutrient Management in 

Agricultural Watersheds: A Wetlands Solution. Wageningen Academic Publishers, Wageningen, 

the Netherlands. 

Harrington, R. and McInnes, R. (2009) Integrated Constructed Wetlands (ICW) for livestock 

wastewater management. Bioresource technology, 100 (22), 5498-5505.  

Harrington, R., and Ryder, C. (2002) The use of integrated constructed wetlands in the 

management of farmyard runoff and waste water. In Proceeding of the National Hydrology 

Seminar on Water Resources Management Sustainable Supply and Demand. The Irish National 

Committees of the IHP (International Hydrological Programme) and ICID (International 

Commission on Irrigation and Drainage), Tullamore, Ireland. 

Headley, T.R., Herity, E., Davison, L., (2005) Treatment at different depths and vertical mixing 

within a 1-m deep horizontal subsurface flow wetland. Ecological Engineering 25, 567-582. 

Heritage, J., Evans, E. G. V., Killington, R. A. (1999) Microbiology in Action, Cambridge: 

Cambridge University Press. 



220 
 

Hijosa-Valsero, M., Sidrach-Cardona, R., Martín-Villacorta, J. and Bécares, E. (2010) 

Optimization of performance assessment and design characteristics in constructed wetlands 

for the removal of organic matter. Chemosphere, 81 (5), 651-657.  

Huddleston, G.M., Gillespie, W.B. and Rodgers, J.H. (2000) Using constructed wetlands to treat 

biochemical oxygen demand and ammonia associated with a refinery effluent. Ecotoxicology 

and environmental safety, 45 (2), 188-193.  

Husson, E., Ecke, F. and Reese, H. (2016) Comparison of manual mapping and automated 

object-based image analysis of non-submerged aquatic vegetation from very-high-resolution 

UAS images. Remote Sensing, 8 (9). 

Husson, E., Reese, H. and Ecke, F. (2017) Combining spectral data and a DSM from UAS-images 

for improved classification of non-submerged aquatic vegetation. Remote Sensing, 9 (3). 

Ingersoll, T.L. and Baker, L.A. (1998) Nitrate removal in wetland microcosms. Water research, 

32 (3), 677-684. 

Jahangir, M.M.R., Richards, K.G., Healy, M.G., Gill, L., Müller, C., Johnston, P. and Fenton, O. 

(2016) Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands 

treating wastewater: A review. Hydrology and Earth System Sciences, 20 (1), 109-123. 

Jenkins, G.A., Greenway, M. and Polson, C. (2012) The impact of water reuse on the hydrology 

and ecology of a constructed stormwater wetland and its catchment. Ecological Engineering, 

47, pp. 308-315. 

Ju, X., Wu, S., Huang, X., Zhang, Y. and Dong, R. (2014) How the novel integration of electrolysis 

in tidal flow constructed wetlands intensifies nutrient removal and odor control. Bioresource 

technology, 169 605-613.  

Ju, X., Wu, S., Zhang, Y. and Dong, R. (2014) Intensified nitrogen and phosphorus removal in a 

novel electrolysis-integrated tidal flow constructed wetland system. Water research, 59 37-45.  

Junge-Berberovic, R. and Graber, A., (2004) Wastewater treatment in the urban environment.  

Kadlec, R.H. (2009) Comparison of free water and horizontal subsurface treatment wetlands. 

Ecological Engineering, 35 (2), 159-174.  



221 
 

Kadlec, R.H. and Wallace, S. (2008) Treatment Wetlands. Second ed. CRC Press.  

Kalin, M. (2001) Biogeochemical and ecological considerations in designing wetland treatment 

systems in post-mining landscapes. Waste Management, 21 (2), 191-196.  

Karathanasis, A.D., Potter, C.L. and Coyne, M.S. (2003) Vegetation effects on fecal bacteria, 

BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. 

Ecological Engineering, 20 (2), 157-169.  

Kayranli, B., Scholz, M., Mustafa, A., Hofmann, O. and Harrington, R. (2009) Performance 

evaluation of integrated constructed wetlands treating domestic wastewater. Water, air, and 

soil pollution, 210 (1-4), 435-451.  

Kickuth, R., (1977) Degradation and incorporation of nutrients from rural wastewaters by plant 

rhizosphere under limnic conditions. Utilization of Manure by Land Spreading. London, UK, 

335–343. 

Korsah, P.E., Ambrose, I.S. and Korsah, W., (2014) The use of constructed wetlands in produce 

water treatment; an option for the oil and gas industry. In: Society of Petroleum Engineers - 

SPE Heavy Oil Conference Canada 2014. 1-12. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84909577926&partnerID=40&md5=a56fd8caed3692af1a508101d84915f2 [Accessed 5 August 

2015].  

Kumar, R. (2014) Research Methodology: a step-by-step guide for beginners. 4th Edition. Sage 

Publications. London. 

Li, X., Sun, T., Li, H., and Wang, H. (2007) Current researches and prospects of phosphorus 

removal in constructed wetland. Shengtai Xuebao/ Acta Ecologica Sinica, 27 (3), 1226-1232. 

Lisein, J., Bonnet, S., Lejeune, P. and Pierrot-Deseilligny, M. (2014) Modeling of the forest 

canopy by photogrammetry from the images acquired by drone. Revue Francaise de 

Photogrammetrie et de Teledetection, (206), 45-54.  

Liu, R., Zhao, Y., Doherty, L., Hu, Y. and Hao, X. (2015) A review of incorporation of constructed 

wetland with other treatment processes. Chemical Engineering Journal, 279 220-230.  



222 
 

Lu, S.Y., Wu, F.C., Lu, Y.F., Xiang, C.S., Zhang, P.Y. and Jin, C.X. (2009) Phosphorus removal from 

agricultural runoff by constructed wetland. Ecological Engineering, 35 (3), 402-409.  

Lucas, R.; Earl, E. R.; Babatunde, A. O.; Bockelmann-Evans, B. N. (2014) Constructed Wetlands 

for Stormwater Management in the UK: A Concise Review. Civil Engineering and Environmental 

Systems, 1-18. 

Lv, X. and Ruan, X., (2011) Removal of natural organic matter by integrated vertical-flow 

constructed wetland. In: International Conference on Management and Service Science, MASS 

2011. 12 August 2011 through 14 August 2011, Wuhan. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

80052887921&partnerID=40&md5=047da470a53e714d82c2f2394a65318b [Accessed 30 

October 2014].  

Maltais-Landry, G., Maranger, R., Brisson, J. and Chazarenc, F. (2009) Greenhouse gas 

production and efficiency of planted and artificially aerated constructed wetlands. 

Environmental Pollution, 157 (3), 748-754. 

Martin, J. (2016). The Drone That Won't Crash Into Things. Available: 

http://www.pcadvisor.co.uk/review/drones/dji-phantom-4-review-drone-that-wont-crash-

into-things-3637504/. Last accessed 11th December 2016. 

McCarthy, G., Lawlor, R, P.G., Gutierrez, M. and Gardiner, G.E., (2011a) Removal of Salmonella 

and indicator micro-organisms in integrated constructed wetlands treating agricultural 

wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances 

and Environmental Engineering, 46(7), pp. 764-770.  

McCarthy, G., Lawlor, P.G., Harrington, C. and Gardiner, G.E. (2011b) Microbial removal from 

the separated liquid fraction of anaerobically digested pig manure in meso-scale integrated 

constructed wetlands. Bioresource technology, 102 (20), 9425-9431.  

Meng, P., Hu, W., Pei, H., Hou, Q. and Ji, Y. (2014) Effect of different plant species on nutrient 

removal and rhizospheric microorganisms’ distribution in horizontal-flow constructed 

wetlands. Environmental Technology (United Kingdom), 35 (7), 808-816.  

 



223 
 

Mesas-Carrascosa, F.-., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J.-., 

Borra-Serrano, I. and López-Granados, F. (2015) Assessing optimal flight parameters for 

generating accurate multispectral orthomosaicks by uav to support site-specific crop 

management. Remote Sensing, 7 (10), 12793-12814.  

Miller, E., Dandois, J.P., Detto, M. and Hall, J.S. (2017) Drones as a tool for monoculture 

plantation assessment in the steepland tropics. Forests, 8 (5). 

Mirunalini, V., Sudarsan, J.S., Deeptha, V.T. and Paramaguru, T. (2014) Role of integrated 

constructed wetland for wastewater treatment. Asian Journal of Applied Sciences, 7 (6), 448-

452.  

Morató, J., Codony, F., Sánchez, O., Pérez, L.M., García, J. and Mas, J. (2014) Key design factors 

affecting microbial community composition and pathogenic organism removal in horizontal 

subsurface flow constructed wetlands. Science of the Total Environment, 481 (1), 81-89.  

Moshiri, G. A. (1993) Constructed Wetlands for Water Quality Improvement. CRC Press. 

Mustafa, A. and Scholz, M. (2011) Characterization of microbial communities transforming and 

removing nitrogen in wetlands. Wetlands, 31 (3), 583-592.  

Mustafa, A. and Scholz, M. (2011) Nutrient accumulation in Typha latifolia L. and sediment of a 

representative integrated constructed wetland. Water, air, and soil pollution, 219 (1-4), 329-

341.  

Mustafa, A., Scholz, M., Harrington, R. and Carroll, P. (2009) Long-term performance of a 

representative integrated constructed wetland treating farmyard runoff. Ecological 

Engineering, 35 (5), 779-790.  

NI Direct (2016) Sewerage Services. Available from: 

https://www.nidirect.gov.uk/articles/sewerage-services [Accessed 19/12/2016]. 

Niu, C., He, Z., Ge, Y., Chang, J. and Lu, Z. (2015) Effect of plant species richness on methane 

fluxes and associated microbial processes in wetland microcosms. Ecological Engineering, 84 

250-259.  

NIW (2014a) Annual Report and Accounts 2013/14: Putting Our Customers First. Available 

from: 



224 
 

http://www.niwater.com/sitefiles/resources/pdf/reports/annualreport/niwannualreport2013-

14.pdf [Accessed 10/12/2014]. 

NIW (2014b) Energy Policy-Northern Ireland Water. Available from: 

https://www.niwater.com/energy-policy/ [Accessed 10/12/2014].  

NIW (2016a) Wastewater Treatment. Available from: https://www.niwater.com/wastewater-

treatment/ [Accessed 19/12/2016]. 

NIW (2016b) Annual Report and Accounts 2016. Available from: 

https://www.niwater.com/sitefiles/resources/pdf/reports/annualreport/2016/niwannualrepor

t201516web.pdf [Accessed 19/12/2016]. 

Nolan, T., Troy, S.M., Gilkinson, S., Frost, P., Xie, S., Zhan, X., Harrington, C., Healy, M.G. and 

Lawlor, P.G. (2012) Economic analyses of pig manure treatment options in Ireland. Bioresource 

technology, 105 15-23.   

Northern Ireland Executive (2010) Everyone's Involved - Sustainable Development Strategy. 

Available from: http://www.ofmdfmni.gov.uk/sustainable-development-strategy-

lowres__2_.pdf [Accessed 10/12/2014]. 

O'Geen, A.T., Budd, R., Gan, J., Maynard, J.J., Parikh, S.J. and Dahlgren, R.A. (2010) Chapter 

One - Mitigating Nonpoint Source Pollution in Agriculture with Constructed and Restored 

Wetlands. Advances in Agronomy, 108 (0), 1-76. 

Pan, T., Zhu, X. and Ye, Y. (2011) Estimate of life-cycle greenhouse gas emissions from a vertical 

subsurface flow constructed wetland and conventional wastewater treatment plants: A case 

study in China. Ecological Engineering, 37 (2), 248-254. 

Pandey, G. N., Carney, G. C., (2001) Environmental Engineering. Tata McGraw-Hill Education. 

Papaevangelou, V., Gikas, G.D. and Tsihrintzis, V.A. (2016) Effect of operational and design 

parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands 

treating university campus wastewater. Environmental Science and Pollution Research, 1-16. 

Papaevangelou, V.A., Gikas, G.D., Tsihrintzis, V.A., Antonopoulou, M. and Konstantinou, I.K. 

(2016) Removal of Endocrine Disrupting Chemicals in HSF and VF pilot-scale constructed 

wetlands. Chemical Engineering Journal, 294 146-156. 



225 
 

Parmar S., and Singh V. (2015) Phytoremediation Approaches for Heavy Metal Pollution: A 

Review. J Plant Sci Res. 2015;2(2): 139. 

Paudel, R., Grace, K.A., Galloway, S., Zamorano, M. and Jawitz, J.W. (2013) Effects of hydraulic 

resistance by vegetation on stage dynamics of a stormwater treatment wetland. Journal of 

Hydrology, 484 74-85.  

Pei, Y., Yang, Z. and Tian, B. (2010) Nitrate removal by microbial enhancement in a riparian 

wetland. Bioresource technology, 101 (14), 5712-5718.  

Phewnil, O., Chunkao, K., Pattamapitoon, T., Intaraksa, A., Chueawong, O., Chantrasoon, C. and 

Boonprakong, T. (2014) Choosing aquatic plant species for high wastewater treatment 

efficiency through small wetland. Modern Applied Science, 8 (4), 187-194. 

Phillipson, J., Lowe, P., Proctor, A. and Ruto, E. (2012) Stakeholder engagement and knowledge 

exchange in environmental research. Journal of environmental management, 95 (1), 56-65.  

Rai, U.N., Upadhyay, A.K., Singh, N.K., Dwivedi, S. and Tripathi, R.D. (2015) Seasonal 

applicability of horizontal sub-surface flow constructed wetland for trace elements and 

nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. 

Ecological Engineering, 81 115-122.  

Ranieri, E., Gorgoglione, A., Petrella, A., Petruzzelli, V. and Gikas, P. (2015) Benzene removal in 

horizontal subsurface flow constructed wetlands treatment. International Journal of Applied 

Engineering Research, 10 (6), 14603-14614.  

Reed, M.S., Stringer, L.C., Fazey, I., Evely, A.C. and Kruijsen, J.H.J. (2014) Five principles for the 

practice of knowledge exchange in environmental management. Journal of environmental 

management, 146 337-345.  

Scholz, C., Jones, T.G., West, M., Ehbair, A.M.S., Dunn, C. and Freeman, C. (2016) Constructed 

wetlands may lower inorganic nutrient inputs but enhance DOC loadings into a drinking water 

reservoir in North Wales. Environmental Science and Pollution Research, 23 (18), 18192-

18199. 

Scholz, M., Harrington, R., Carroll, P. and Mustafa, A. (2010) Monitoring of nutrient removal 

within integrated constructed wetlands (ICW). Desalination, 250 (1), 356-360.  



226 
 

Scholz, M., Harrington, R., Carroll, P. and Mustafa, A. (2007) The integrated constructed 

wetlands (ICW) concept. Wetlands, 27 (2), 337-354.  

Scholz, M. and Lee, B.-. (2005) Constructed wetlands: A review. International Journal of 

Environmental Studies, 62 (4), 421-447.  

Scholz, M., Sadowski, A.J., Harrington, R. and Carroll, P. (2007b) Integrated Constructed 

Wetlands assessment and design for phosphate removal. Biosystems Engineering, 97 (3), 415-

423.  

Seeger, E.M., Maier, U., Grathwohl, P., Kuschk, P. and Kaestner, M. (2013) Performance 

evaluation of different horizontal subsurface flow wetland types by characterization of flow 

behaviour, mass removal and depth-dependent contaminant load. Water research, 47 (2), 769-

780.  

Semeraro, T., Giannuzzi, C., Beccarisi, L., Aretano, R., De Marco, A., Pasimeni, M.R., Zurlini, G. 

and Petrosillo, I. (2015) A constructed treatment wetland as an opportunity to enhance 

biodiversity and ecosystem services. Ecological Engineering, 82 517-526.  

Shui, Y., Jiang, X., Jun, H., Li, Q. and Yu, J., (2011) Experimental study on purification of the 

eutrophic water by integrated constructed wetland. In: 2011 International Conference on 

Electric Technology and Civil Engineering, ICETCE 2011. 22 April 2011 through 24 April 2011, 

Lushan. 6597-6600. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

79959684028&partnerID=40&md5=85d0253e9eca6763fd2a542532a27794 [Accessed 30 

October 2014].  

Shuib, N. and Baskaran, K. (2011) Effects of different substrates and hydraulic retention time 

(HRT) on the removal of total nitrogen and organic matter in a sub-surface horizontal flow 

constructed wetland. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84856987409&partnerID=40&md5=c653496dd65faaa3c2fd2a9a308275f1 [Accessed 19 

February 2015].  

Stein, O.R. and Hook, P.B. (2005) Temperature, plants, and oxygen: How does season affect 

constructed wetland performance? Journal of Environmental Science and Health - Part A 

Toxic/Hazardous Substances and Environmental Engineering, 40 (6-7), 1331-1342.  



227 
 

PRONI (2017) Stoneyford Historical OS Map 5th Edition. Available at: 

https://apps.spatialni.gov.uk/EduSocial/PRONIApplication/index.html . [Accessed: 08.08.17]. 

Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, 

R.A. and Moormann, H. (2003) Effects of plants and microorganisms in constructed wetlands 

for wastewater treatment. Biotechnology Advances, 22 (1-2), 93-117.  

Ström, L., Lamppa, A. and Christensen, T.R. (2007) Greenhouse gas emissions from a 

constructed wetland in southern Sweden. Wetlands Ecology and Management, 15 (1), 43-50.  

Sultana, M., Chowdhury, A.K.M.M.B., Michailides, M.K., Akratos, C.S., Tekerlekopoulou, A.G. 

and Vayenas, D.V. (2015) Integrated Cr(VI) removal using constructed wetlands and 

composting. Journal of hazardous materials, 281 106-113.  

Taylor, C.R. (2009) Selecting Plant Species to Optimize Wastewater Treatment in Constructed 

Wetlands. Master of Science ed. Montana State University. Available from: 

http://scholarworks.montana.edu/xmlui/bitstream/handle/1/2398/TaylorC0509.pdf [Accessed 

10/02/2015]. 

Taylor, C.R., Hook, P.B., Stein, O.R. and Zabinski, C.A. (2011) Seasonal effects of 19 plant 

species on COD removal in subsurface treatment wetland microcosms. Ecological Engineering, 

37 (5), 703-710.  

Türker, O.C., Türe, C., Böcük, H., Çiçek, A. and Yakar, A. (2016) Role of plants and vegetation 

structure on boron (B) removal process in constructed wetlands. Ecological Engineering, 88 

143-152.  

Tuttolomondo, T., Leto, C., La Bella, S., Leone, R., Virga, G. and Licata, M. (2016) Water balance 

and pollutant removal efficiency when considering evapotranspiration in a pilot-scale 

horizontal subsurface flow constructed wetland in Western Sicily (Italy). Ecological 

Engineering, 87 295-304. 

Tuttolomondo, T., Licata, M., Leto, C., Leone, R. and La Bella, S. (2015) Effect of plant species 

on water balance in a pilot-scale horizontal subsurface flow constructed wetland planted with 

Arundo donax L. and Cyperus alternifolius L. - Two-year tests in a Mediterranean environment 

in the West of Sicily (Italy). Ecological Engineering, 74 79-92.  



228 
 

US Environmental Protection Agency (1988) Design Manual: Constructed Wetlands and 

Aquatic Plant Systems for Municipal Wastewater Treatment.  

Vergeles, Y., Vystavna, Y., Ishchenko, A., Rybalka, I., Marchand, L. and Stolberg, F. (2015) 

Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecological 

Engineering, 83 159-168.  

Vymazal, J. (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for 

wastewater treatment. Ecological Engineering, 25 (5), 478-490.  

Vymazal, J. (2007) Removal of nutrients in various types of constructed wetlands. Science of 

the Total Environment, 380 (1-3), 48-65.  

Vymazal, J. (2009) The use constructed wetlands with horizontal sub-surface flow for various 

types of wastewater. Ecological Engineering, 35 (1), 1-17.  

 

Vymazal, J. (2011) Constructed wetlands for wastewater treatment: Five decades of 

experience. Environmental Science and Technology, 45 (1), 61-69.  

Vymazal, J. and Brezinová, T. (2015) Heavy metals in plants in constructed and natural 

wetlands: Concentration, accumulation and seasonality. Water Science and Technology, 71 (2), 

268-276. 

Vymazal, J. and Brezinová, T. (2015) The use of constructed wetlands for removal of pesticides 

from agricultural runoff and drainage: A review. Environment international, 75 11-20.  

Vymazal, J., Brezinová, T. and Koželuh, M. (2015) Occurrence and removal of estrogens, 

progesterone and testosterone in three constructed wetlands treating municipal sewage in the 

Czech Republic. Science of the Total Environment, 536 625-631.  

Vymazal, J. and Kröpfelová, L. (2015) Multistage hybrid constructed wetland for enhanced 

removal of nitrogen. Ecological Engineering, 84 202-208.  

Wu, H., Zhang, J., Ngo, H.H., Guo, W., Hu, Z., Liang, S., Fan, J. and Liu, H. (2015) A review on the 

sustainability of constructed wetlands for wastewater treatment: Design and operation. 

Bioresource technology, 175 594-601.  



229 
 

Wu, S., Kuschk, P., Brix, H., Vymazal, J. and Dong, R. (2014) Development of constructed 

wetlands in performance intensifications for wastewater treatment: A nitrogen and organic 

matter targeted review. Water research, 57 40-45.  

Xiaoyan, T., Suyu, W., Yang, Y., Ran, T., Yunv, D., Dan, A. and Li, L. (2015) Removal of six 

phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chemical 

Engineering Journal, 275 198-205.  

Yang, Q., Chen, Z., Zhao, J., and Gu, B.-. (2007) Contaminant removal of domestic wastewater 

by constructed wetlands: Effects of plant species. Journal of Integrative Plant Biology, 49 (4), 

437-446.  

Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Ng, W.J. and Tan, S.K. (2014) Application 

of constructed wetlands for wastewater treatment in developing countries - A review of recent 

developments (2000-2013). Journal of environmental management, 141 116-131. 

Zhang, L., Mu, L., Xiong, Y., Xi, B., Li, G. and Li, C. (2015) The development of a natural heating 

technology for constructed wetlands in cold climates. Ecological Engineering, 75 51-60.  

Zhao, X., Zhao, Y., Wang, J., Meng, X., Zhang, B., Zhang, R., Wang, T., Huang, N., Wang, S. and 

Wang, W. (2014) Design of a novel constructed treatment wetland system with consideration 

of ambient landscape. International Journal of Environmental Studies. 

Zhao, Z., Chang, J., Han, W., Wang, M., Ma, D., Du, Y., Qu, Z., Chang, S.X. and Ge, Y. (2016) 

Effects of plant diversity and sand particle size on methane emission and nitrogen removal in 

microcosms of constructed wetlands. Ecological Engineering, 95 390-398. 

Zhao, Z., Zhang, Y., Yan, F., Yuan, C. and Zhao, P., (2011) Influence of HRT and temperature on 

treatment of micro-polluted river water by using integrated horizontal-flow constructed 

wetland. In: 2011 2nd International Conference on Mechanic Automation and Control 

Engineering, MACE 2011. 15 July 2011 through 17 July 2011, Inner Mongolia. 6586-6589. 

Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

80054794344&partnerID=40&md5=f98a7052e52a66167f84d63107100f6f [Accessed 30 

October 2014].  



230 
 

Zhou, Q.H., Wu, Z.B., Cheng, S.P., He, F. and Fu, G.P. (2005) Enzymatic activities in constructed 

wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry, 37 (8), 

1454-1459.   

 

 

  



231 
 

BIBLIOGRAPHY 
 

Abdel-Shafy, H.I., El-Khateeb, M.A., Regelsberger, M., El-Sheikh, R. and Shehata, M. (2009) 

Integrated system for the treatment of blackwater and greywater via UASB and constructed 

wetland in Egypt. Desalination and Water Treatment, 8 (1-3), 272-278.  

Abou-Elela, S.I., Golinielli, G., Abou-Taleb, E.M. and Hellal, M.S. (2013) Municipal wastewater 

treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61 

460-468.  

Adhikari, U., Harrigan, T. and Reinhold, D.M. (2014) Use of duckweed-based constructed 

wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecological 

Engineering. 

Adki Vinayak S., Jadhav Jyoti P., Bapat Vishwas A. (2014) At the cross roads of environmental 

pollutants and phytoremediation: a promising bio remedial approach. J. Plant Biochem. 

Biotechnol, 23, 125. 

Adyel, T.M., Oldham, C.E. and Hipsey, M.R. (2016) Stormwater nutrient attenuation in a 

constructed wetland with alternating surface and subsurface flow pathways: Event to annual 

dynamics. Water research, 107 66-82. 

Albalawneh, A., Chang, T., Chou, C. and Naoum, S. (2016) Efficiency of a horizontal sub-surface 

flow constructed wetland treatment system in an arid area. Water (Switzerland), 8 (2). 

Alder, M., and Ziglio, E., (1996) Gazing into the Oracle: The Delphi Method and its application 

to social policy and political health. Jessica Kingsley Publishers. London. 

Allende, K.L., McCarthy, D.T. and Fletcher, T.D. (2014) The influence of media type on removal 

of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms 

planted with Phragmites australis. Chemical Engineering Journal, 246 217-228.  

Almansa, C. and Martínez-Paz, J.M. (2011) What weight should be assigned to future 

environmental impacts? A probabilistic cost benefit analysis using recent advances on 

discounting. Science of the Total Environment, 409 (7), 1305-1314.   



232 
 

Angelakis, A.N. and Snyder, S.A. (2015) Wastewater treatment and reuse: Past, present, and 

future. Water (Switzerland), 7 (9), 4887-4895.  

Arroyo, P., Sáenz de Miera, L.E. and Ansola, G. (2015) Influence of environmental variables on 

the structure and composition of soil bacterial communities in natural and constructed 

wetlands. Science of the Total Environment, 506-507 380-390.  

Ávila, C., García, J. and Garfí, M. (2016) Influence of hydraulic loading rate, simulated storm 

events and seasonality on the treatment performance of an experimental three-stage hybrid 

CW system. Ecological Engineering, 87 324-332.  

Avila, C., Salas, J.J., Martín, I., Aragón, C. and García, J. (2013) Integrated treatment of 

combined sewer wastewater and stormwater in a hybrid constructed wetland system in 

southern Spain and its further reuse. Ecological Engineering, 50 13-20.  

Babatunde, A.O., Zhao, Y.Q., O'Neill, M. and O'Sullivan, B. (2008) Constructed wetlands for 

environmental pollution control: A review of developments, research and practice in Ireland. 

Environment international, 34 (1), 116-126.  

Balana, B.B., Jackson-Blake, L., Martin-Ortega, J. and Dunn, S. (2015) Integrated cost-

effectiveness analysis of agri-environmental measures for water quality. Journal of 

environmental management, 161 163-172.  

Bauer, A.M. and Brown, A., (2014) Quantitative assessment of appropriate technology. In: 

Procedia Engineering. 345-358. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84914174640&partnerID=40&md5=fd367a2694e6f1e7558e94466add4489 [Accessed 1 

February 2016].  

Beeman, R.E. and Reitberger, J.H. (2003) An integrated industrial management facility for 

biological treatment of high nitrate and carbonaceous wastewater. Environmental Progress, 22 

(1), 37-45.  

Beharrell, M. (2004) Planting, Selection and Plant Establishment in Constructed Wetlands in a 

Tropical Environment. Developments in Ecosystems, (1), 311-329. 



233 
 

Behrends, L.L., Bailey, E., Jansen, P., Houke, L. and Smith, S. (2007) Integrated constructed 

wetland systems: Design, operation, and performance of low-cost decentralized wastewater 

treatment systems. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

34248573611&partnerID=40&md5=78e8303c29de6023f23aad4a58ca8f43 [Accessed 30 

October 2014].  

Bell, Judith; Waters, Stephen (2014), Doing Your Research Project: A Guide for First-Time 

Researchers, e-book. Available from: 

http://Ulster.eblib.com/patron/FullRecord.aspx?p=1910218 [Accessed 03 February 2016]. 

Bell, S., McGillivray, D. and Pederson, O. (2013) Environmental Law. 8th ed. Oxford. 

Blanco, I., Molle, P., Sáenz de Miera, L.E. and Ansola, G. (2016) Basic Oxygen Furnace steel slag 

aggregates for phosphorus treatment: Evaluation of its potential use as a substrate in 

constructed wetlands. Water research, 89 355-365.  

Boets, P., Michels, E., Meers, E., Lock, K., Tack, F.M.G. and Goethals, P.L.M. (2011) Integrated 

constructed wetlands (ICW): Ecological development in constructed wetlands for manure 

treatment. Wetlands, 31 (4), 763-771.  

Bonner, R., Aylward, L., Harley, C., Kappelmeyer, U. and Sheridan, C.M. (2017) Heat as a 

hydraulic tracer for horizontal subsurface flow constructed wetlands. Journal of Water Process 

Engineering, 16 183-192. 

Boutilier, L., Jamieson, R., Gordon, R., Lake, C. and Hart, W. (2010) Performance of surface-flow 

domestic wastewater treatment wetlands. Wetlands, 30 (4), 795-804.  

Breen PF, Chick AJ. (1995) Rootzone dynamics in constructed wetlands receiving wastewater: a 

comparison of vertical and horizontal flow systems. Water Sci Technol; 32:281– 90. 

Brezinová, T. and Vymazal, J. (2015) Seasonal growth pattern of Phalaris arundinacea in 

constructed wetlands with horizontal subsurface flow. Ecological Engineering, 80 62-68.  

Brezinová, T. and Vymazal, J. (2014) Competition of Phragmites australis and Phalaris 

arundinacea in constructed wetlands with horizontal subsurface flow - does it affect BOD5, 

COD and TSS removal? Ecological Engineering, 73 53-57.  



234 
 

Brix, H. and Johansen, N. (1999) Treatment of Domestic Sewage in a Two-Stage Constructed 

Wetland - Design Principles. Nutrient Cycling and Retention in Natural and Constructed 

Wetlands, 05/03/2015.available from: 

http://mit.biology.au.dk/~biohbn/cv/pdf_files/BackhuysPubl_1999_155_163.pdf. 

Brusà, R.B., Bonometto, A., Feola, A., Oselladore, F., Gabellini, M., Ferrari, C.R. and Palumbo, L., 

(2011) Integrated management strategies for sustainable development of productive activities 

in Sacca di Goro. In: 10th International Conference on the Mediterranean Coastal Environment, 

MEDCOAST 2011. 25 October 2011 through 29 October 2011, Rhodes. Middle East Technical 

University, 37-48. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84900816667&partnerID=40&md5=89acec131f7eb2fd2406f1e200c480aa [Accessed 30 

October 2014].  

Bu, L. (2014) Planning and design for constructed wetlands based on the ecological landscape. 

Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84905167601&partnerID=40&md5=f299807a2c1dd58c353bb2a3e7f74247 [Accessed 5 August 

2015].  

Bulc, T.G. (2006) Long term performance of a constructed wetland for landfill leachate 

treatment. Ecological Engineering, 26 (4), 365-374.  

Butterworth, E., Richards, A., Jones, M., Brix, H., Dotro, G. and Jefferson, B. (2016) Impact of 

aeration on macrophyte establishment in sub-surface constructed wetlands used for tertiary 

treatment of sewage. Ecological Engineering, 91 65-73. 

Button, M., Nivala, J., Weber, K.P., Aubron, T. and Müller, R.A. (2015) Microbial community 

metabolic function in subsurface flow constructed wetlands of different designs. Ecological 

Engineering, 80 162-171.  

Carballeira, T., Ruiz, I. and Soto, M. (2016) Effect of plants and surface loading rate on the 

treatment efficiency of shallow subsurface constructed wetlands. Ecological Engineering, 90 

203-214. 

Carroll, P., Harrington, R., Keohane, J. and Ryder, C., 2005. Water treatment performance and 

environmental impact of integrated constructed wetlands in the Anne valley watershed, 

Ireland. Wageningen Academic Publishers.   



235 
 

Casas Ledón, Y., Rivas, A., López, D. and Vidal, G. (2017) Life-cycle greenhouse gas emissions 

assessment and extended exergy accounting of a horizontal-flow constructed wetland for 

municipal wastewater treatment: A case study in Chile. Ecological Indicators, 74 130-139. 

Ceballos, B.S.O. de, Oliveira, H., Meira, C.M.B.S., Konig, A., Guimaraes, A.O., Souza, J.T.de., 

(2001) River water quality improvement by natural and constructed wetland systems in the 

tropical semi-arid region of Northeastern Brazil. Water Science & Technology 44 (11), 599e605. 

Chan, S.Y., Tsang, Y.F., Chua, H., Sin, S.N. and Cui, L.H. (2008) Performance study of vegetated 

sequencing batch coal slag bed treating domestic wastewater in suburban area. Bioresource 

technology, 99 (9), 3774-3781.  

Chan, S.Y., Tsang, Y.F., Cui, L.H. and Chua, H. (2008) Domestic wastewater treatment using 

batch-fed constructed wetland and predictive model development for NH3-N removal. Process 

Biochemistry, 43 (3), 297-305.  

Chandrakanth, G., Srimurali, M. and VivekVardhan, C.M. (2016) A study on domestic 

wastewater treatment by pilot-scale constructed wetlands. International Journal of ChemTech 

Research, 9 (6), 376-383. 

Chang, H.-., Yang, L. and Yeh, S., (2011) Establishing an assessment system for constructed 

wetlands. Sustainable Environment Research, 21(1), pp. 73-79. 

Chang, J., Zhang, X., Perfler, R., Xu, Q., Niu, X., and Ge, Y. (2007) Effect of hydraulic loading rate 

on the removal efficiency in a constructed wetland in subtropical China. Fresenius 

Environmental Bulletin, 16 (9 A), 1082-1086.  

Chang, J., Wu, S., Dai, Y., Wu, Z., and Liang, W. (2013) Nitrate removal from tail water by 

integrated vertical-flow constructed wetlands at a high hydraulic loading rate. Desalination 

and Water Treatment, 51 (31-33), 6031-6037.  

Chang, J., Wu, S., Dai, Y., Liang, W. and Wu, Z., (2013) Nitrogen removal from nitrate-laden 

wastewater by integrated vertical-flow constructed wetland systems. Ecological Engineering, 

58 192-201.  



236 
 

Chang, J., Wu, S., Dai, Y., Liang, W. and Wu, Z., (2012) Treatment performance of integrated 

vertical-flow constructed wetland plots for domestic wastewater. Ecological Engineering, 44 

152-159.  

Chang, J., Wu, S., Zhang, S., Zhang, S., and Liang, W. (2014) Comparative evaluation of total 

phosphorus removal performances for treatment of domestic and secondary wastewater using 

integrated vertical-flow constructed wetlands: two years' experience. Desalination and Water 

Treatment. 

Chen, C., Wu, R.-., Liu, W., Su, W. and Chang, Y. (2009) Development of a methodology for 

strategic environmental assessment: Application to the assessment of golf course installation 

policy in Taiwan. Environmental management, 43 (1), 166-188.  

Chen, J., Liu, Y., Su, H., Ying, G., Liu, F., Liu, S., He, L., Chen, Z., Yang, Y., and Chen, F.-. (2014) 

Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated 

constructed wetland. Environmental Science and Pollution Research. 

Chen, J., Ying, G.-., Wei, X.-., Liu, Y.-., Liu, S.-., Hu, L.-., He, L.-., Chen, Z.-., Chen, F.-. and Yang, Y.-

. (2016) Removal of antibiotics and antibiotic resistance genes from domestic sewage by 

constructed wetlands: Effect of flow configuration and plant species. Science of the Total 

Environment, 571 974-982. 

Chen, Q.F., Dong, W.G., Ma, J.J., Li, Q., Gao, X.G., Ding, S.G. and Zhang, J. (2014) Effects of 

hydraulic loading rate on nutrient removal in multi-stage constructed wetland. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84891672232&partnerID=40&md5=3022aa2521f8d1c1bbdcefc125df5a80 [Accessed 5 August 

2015].  

Chen, Y., Wen, Y., Tang, Z., Huang, J., Zhou, Q. and Vymazal, J. (2015) Effects of plant biomass 

on bacterial community structure in constructed wetlands used for tertiary wastewater 

treatment. Ecological Engineering, 84 38-45.  

Chen, Y., Wen, Y., Zhou, Q. and Vymazal, J. (2014) Effects of plant biomass on denitrifying 

genes in subsurface-flow constructed wetlands. Bioresource technology, 157 341-345.  



237 
 

Chen, Y., Wu, X., Chen, M., Jiang, L., Li, K., Lei, D. and Wang, H.-. (2010) Selection of winter 

plant species for wetlands constructed as sewage treatment systems and evaluation of their 

wastewater purification potentials. Huanjing Kexue/Environmental Science, 31 (8), 1789-1794. 

Chen, Z.M., Chen, B., Zhou, J.B., Li, Z., Zhou, Y., Xi, X.R., Lin, C. and Chen, G.Q. (2008) A vertical 

subsurface-flow constructed wetland in Beijing. Communications in Nonlinear Science and 

Numerical Simulation, 13 (9), 1986-1997.  

Cheng, B., Hu, C.W. and Zhao, Y.J. (2011) Effects of plants development and pollutant loading 

on performance of vertical subsurface flow constructed wetlands. International Journal of 

Environmental Science and Technology, 8 (1), 177-186.  

Cheng, X., Chen, W., Gu, B., Liu, X., Chen, F., Chen, Z., Zhou, X., Li, Y., Huang, H. and Chen, Y.-. 

(2009) Morphology, ecology, and contaminant removal efficiency of eight wetland plants with 

differing root systems. Hydrobiologia, 623 (1), 77-85.  

Cheng, X., Wang, M., Zhang, C., Wang, S. and Chen, Z. (2014) Relationships between plant 

photosynthesis, radial oxygen loss and nutrient removal in constructed wetland microcosms. 

Biochemical systematics and ecology, 54 299-306.  

Chiarawatchai, N., Heers, M. and Otterpohl, R. (2008) Criteria for determining alternative 

plants to improve the resource recovery efficiency in constructed wetlands. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

57149101903&partnerID=40&md5=159868c3a1eda94530a565fcb13d974e [Accessed 10 

February 2015].  

Choudhary, A.K., Kumar, S. and Sharma, C. (2011) Constructed wetlands: An option for pulp 

and paper mill wastewater treatment. Electronic Journal of Environmental, Agricultural and 

Food Chemistry, 10 (10), 3023-3037.  

Coban, O., Kuschk, P., Kappelmeyer, U., Spott, O., Martienssen, M., Jetten, M.S.M. and 

Knoeller, K. (2015) Nitrogen transforming community in a horizontal subsurface-flow 

constructed wetland. Water research, 74 203-212.  

Cohen, M.F., Hare, C., Kozlowski, J., McCormick, R.S., Chen, L., Schneider, L., Parish, M., Knight, 

Z., Nelson, T.A. and Grewell, B.J. (2013) Wastewater polishing by a channelized macrophyte-

dominated wetland and anaerobic digestion of the harvested phytomass. Journal of 



238 
 

Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental 

Engineering, 48 (3), 319-330.  

Costa-Pierce, B.A. (1998) Preliminary investigation of an integrated aquaculture-wetland 

ecosystem using tertiary-treated municipal wastewater in Los Angeles County, California. 

Ecological Engineering, 10 (4), 341-354.  

Cotgrave, A. and Riley, M. (2013) Total sustainability in the built environment. Basingstoke: 

Palgrave Macmillan. 

Creswell, J. W., Plano Clark, V. L., (2007) Designing and Conducting Mixed Methods Research. 

Sage Publications. USA. 

Creswell, J. W., (2009) Research Design: Qualitative, Quantitative, and Mixed Methods 

Approaches. Sage Publicatios. USA. 3rd Edition. 

Cui, J. and Jiang, C. (2013) A sustainability strategy of integrated highway wetlands for urban 

water management in China. Desalination and Water Treatment, 51 (31-33), 6166-6171.  

Cui, L., Luo, S., Zhu, X., and Liu, Y., (2003) Treatment and utilization of septic tank effluent using 

vertical-flow constructed wetlands and vegetable hydroponics. Journal of Environmental 

Sciences, 15 (1), 75-82.  

Culleton, N., Dunne, E., Regan, S., Ryan, T., Harrington, R. and Ryder, C., (2005) Cost effective 

management of soiled water from agricultural systems in Ireland. Wageningen Academic 

Publishers. 

Curtis, I.A. (2004) Valuing ecosystem goods and services: a new approach using a surrogate 

market and the combination of a multiple criteria analysis and a Delphi panel to assign weights 

to the attributes. Ecological Economics, 50 (3–4), 163-194.  

Dabney, S.M., Moore, M.T. and Locke, M.A. (2006) Integrated management of in-field, edge-

of-field, and after-field buffers. Journal of the American Water Resources Association, 42 (1), 

15-24.  

DAERA-NI (2016b) Review of Sensitive Areas. Available from: 

https://www.nidirect.gov.uk/articles/sewerage-services [Accessed 19/12/2016]. 



239 
 

Davies, C.M., Mitchell, V.G., Petterson, S.M., Taylor, G.D., Lewis, J., Kaucner, C. and Ashbolt, 

N.J. (2008) Microbial challenge-testing of treatment processes for quantifying stormwater 

recycling risks and management. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

43949086216&partnerID=40&md5=e4717002daa139b77bc40c31620e7867 [Accessed 30 

October 2014].  

Davies, L.C., Cabrita, G.J.M., Ferreira, R.A., Carias, C.C., Novais, J.M. and Martins-Dias, S. (2009) 

Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed 

wetland: From pilot to molecular scale. Ecological Engineering, 35 (6), 961-970.  

Deeptha, V.T., Sudarsan, J.S. and Baskar, G. (2015) Performance and cost evaluation of 

constructed wetland for domestic waste water treatment. Journal of Environmental Biology, 

36 (5), 1071-1074. 

Deng, H., Ge, L., Xu, T., Zhang, M., Wang, X., Zhang, Y. and Peng, H. (2011) Analysis of the 

metabolic utilization of carbon sources and potential functional diversity of the bacterial 

community in lab-scale horizontal subsurface-flow constructed wetlands. Journal of 

environmental quality, 40 (6), 1730-1736.  

Dhir, B., Sharmila, P. and Saradhi, P.P. (2009) Potential of aquatic macrophytes for removing 

contaminants from the environment. Critical Reviews in Environmental Science and 

Technology, 39 (9), 754-781. 

Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L. and Liu, R. (2015) A review of a recently 

emerged technology: Constructed wetland - Microbial fuel cells. Water research, 85 38-45.  

Dong, C., Huang, Y., Wang, S. and Wang, X. (2016) Oxygen supply and wastewater treatment in 

subsurface-flow constructed wetland Mesocosm: Role of plant presence. Polish Journal of 

Environmental Studies, 25 (2), 573-579. 

Dudeney, A.W.L., Chan, B.K.C., Bouzalakos, S. and Huisman, J.L. (2013) Management of waste 

and wastewater from mineral industry processes, especially leaching of sulphide resources: 

State of the art. International Journal of Mining, Reclamation and Environment, 27 (1), 2-37.  

Ebrahimi, K., Falconer, R.A. and Lin, B. (2007) Flow and solute fluxes in integrated wetland and 

coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348.  



240 
 

El-Sadek, A., Kahloun, M.E. and Meire, P., (2008). Ecohydrology for integrated Water resources 

management in the Nile Basin. Ecohydrology and Hydrobiology, 8(2-4), pp. 237-244. 

European Commission (2015) Report on the progress of the Water Framework Directive 

Programme of Measures. Available at http://ec.europa.eu/environment/water/water-

framework/pdf/4th_report/CSWD%20Report%20on%20WFD%20PoMs.pdf [Accessed 26 July 

2017]. 

Fang, F., Ni, B., and Yu, H., (2009). Estimating the kinetic parameters of activated sludge 

storage using weighted non-linear least-squares and accelerating genetic algorithm. Water 

research, 43(10), pp. 2595-2604. 

Fang, Y., He, C., Liang, X., Jin, H., Zhan, Y., Zhang, Y., and Zhang, X., (2011). Influence of aeration 

on nitrogen removal of constructed wetlands. Wetland Science, 9(3), pp. 270-276. 

Feil, A.A., de Quevedo, D.M. and Schreiber, D. (2015) Selection and identification of the 

indicators for quickly measuring sustainability in micro and small furniture industries. 

Sustainable Production and Consumption, 3 34-44.  

Fisher, P.J., Woodward, R., Zannetides, M., Dodds, A.A. and Saxby, P., (1992). Environmental 

engineering initiatives in servicing Sydney's future urban development. National Conference 

Publication - Institution of Engineers, Australia, (92 pt. 5), pp. 91-96.  

Fu, G., Guo, Z., Zhang, J., Chen, Z. and Wong, M.-. (2015) Organic matter transplant improved 

purification performance of newly built constructed wetlands. Ecological Engineering, 83 338-

342.  

Fu, G., Wu, Z., Ren, M., He, F., Pressl, A. and Perfler, R., (2002). Application of the reaction 

theory to flow pattern on the integrated vertical flow constructed wetland. Huanjing 

Kexue/Environmental Science, 23(4), pp. 76-80.  

Fu, G., Wu, Z., Ren, M., He, F., Cheng, S., Pressl, A. and Perfler, R., (2001). Studies on the 

reaction kinetics and water flow pattern of the integrated vertical-flow constructed wetland. 

Zhongguo Huanjing Kexue/China Environmental Science, 21(6), pp. 535-539.  



241 
 

Fu, G.P., Wu, Z.B., Zhang, S., Cheng, S.P. and He, F., (2004). Studies on clogging of the 

constructed wetland. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan 

jing ke xue Wei yuan Hui "Huan jing ke xue" bian ji Wei yuan hui.], 25(3), pp. 144-149.  

Fu, R., Zhu, Y., Yang, H. and Gu, G., (2008) Characteristics of microbial biomass in subsurface 

constructed wetland treating eutrophic water. Huanjing Kexue/Environmental Science, 29(10), 

pp. 2754-2759.  

Gagnon, V., Chazarenc, F., Kõiv, M. and Brisson, J. (2012) Effect of plant species on water 

quality at the outlet of a sludge treatment wetland. Water research, 46 (16), 5305-5315.  

Ganisen, S., Mohammad, I.S., Nesan, L.J., Mohammed, A.H. and Kanniyapan, G. (2015) The 

identification of design for maintainability imperatives to achieve cost effective building 

maintenance: A Delphi study. Jurnal Teknologi, 77 (30), 75-88.  

Gao, H., Deng, L. and Zhu, F., (2011) Removal efficiency of nitrogen and phosphorus in 

integrated constructed lake-side wetlands. Fresenius Environmental Bulletin, 20(10 A), pp. 

2756-2763.  

Gao, J., Chen, S., Wang, W., Yan, Q., Jiang, N. and Ruiqin, Z., (2012) Effects of unpowered 

complex eco-technology on sewage purification in central Chinese rural areas. Polish Journal of 

Environmental Studies, 21(6), pp. 1595-1602.  

Gao, B., Ge, Y., Liu, Q., Yang, Z., Zhang, J., Chang, J., Jiang, Y. and Min, H., (2006) Purifying 

performance of constructed wetland treating light eutrophic water in an ornamental fishpond. 

Fresenius Environmental Bulletin, 15(12 B), pp. 1563-1567.  

García, J., Rousseau, D.P.L., Morató, J., Lesage, E., Matamoros, V. and Bayona, J.M. (2010) 

Contaminant removal processes in subsurface-flow constructed wetlands: A review. Critical 

Reviews in Environmental Science and Technology, 40 (7), 561-661.  

García-Lledó, A., Ruiz-Rueda, O., Vilar-Sanz, A., Sala, L. and Bañeras, L. (2011) Nitrogen removal 

efficiencies in a free water surface constructed wetland in relation to plant coverage. 

Ecological Engineering, 37 (5), 678-684.  

Garfí, M., Pedescoll, A., Bécares, E., Hijosa-Valsero, M., Sidrach-Cardona, R. and García, J. 

(2012) Effect of climatic conditions, season and wastewater quality on contaminant removal 



242 
 

efficiency of two experimental constructed wetlands in different regions of Spain. Science of 

the Total Environment, 437 61-67.  

Gargallo, S., Martín, M., Oliver, N. and Hernández-Crespo, C. (2017) Sedimentation and 

resuspension modelling in free water surface constructed wetlands. Ecological Engineering, 98 

318-329.  

Ge, Y., Han, W., Huang, C., Wang, H., Liu, D., Chang, S.X., Gu, B., Zhang, C., Gu, B., Fan, X., Du, Y. 

and Chang, J. (2015) Positive effects of plant diversity on nitrogen removal in microcosms of 

constructed wetlands with high ammonium loading. Ecological Engineering, 82 614-623.  

Gersberg, R.M., Elkins, B.V. and Goldman, C.R., (1985). Wastewater treatment by artificial 

wetlands. Water Science and Technology, 17(4-5 -5 pt. 2), pp. 443-450.  

Gkika, D., Gikas, G.D. and Tsihrintzis, V.A. (2014) Construction and operation costs of 

constructed wetlands treating wastewater. Water Science and Technology, 70 (5), 803-810. 

Gkika, D., Gikas, G.D. and Tsihrintzis, V.A. (2015) Environmental footprint of constructed 

wetlands treating wastewater. Journal of Environmental Science and Health - Part A 

Toxic/Hazardous Substances and Environmental Engineering, 50 (6), 631-638.  

González-Ortegón, E., Walton, M.E.M., Moghaddam, B., Vilas, C., Prieto, A., Kennedy, H.A., 

Pedro Cañavate, J. and Le Vay, L. (2015) Flow regime in a restored wetland determines trophic 

links and species composition in the aquatic macroinvertebrate community. Science of the 

Total Environment, 503–504 (0), 241-250.  

Gopal, B., (2003). Wetlands, agriculture and water resources management: The need for an 

integrated approach. International Journal of Ecology and Environmental Sciences, 29(1), pp. 

47-54.  

Gorito, A.M., Ribeiro, A.R., Almeida, C.M.R. and Silva, A.M.T. (2017) A review on the 

application of constructed wetlands for the removal of priority substances and contaminants 

of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227 

428-443. 

Gray, K.R. and Biddlestone, A.J. (1995) Engineered reed-bed systems for wastewater 

treatment. Trends in biotechnology, 13 (7), 248-252. 



243 
 

Green, M., Shaul, N., Beliavski, M., Sabbah, I., Ghattas, B. and Tarre, S. (2006) Minimizing land 

requirement and evaporation in small wastewater treatment systems. Ecological Engineering, 

26 (3), 266-271.  

Groh, T.A., Gentry, L.E. and David, M.B. (2015) Nitrogen removal and greenhouse gas 

emissions from constructed wetlands receiving tile drainage water. Journal of environmental 

quality, 44 (3), 1001-1010.  

Guittonny-Philippe, A., Petit, M.-., Masotti, V., Monnier, Y., Malleret, L., Coulomb, B., 

Combroux, I., Baumberger, T., Viglione, J. and Laffont-Schwob, I. (2015) Selection of wild 

macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. 

Journal of environmental management, 147 108-123.  

Guo, C., Cui, Y., Dong, B., Luo, Y., Liu, F., Zhao, S. and Wu, H. (2017) Test study of the optimal 

design for hydraulic performance and treatment performance of free water surface flow 

constructed wetland. Bioresource technology, 238 461-471.  

Ham, J., Yoon, C.G., Kim, H., and Kim, H., (2010) Modeling the effects of constructed wetland 

on nonpoint source pollution control and reservoir water quality improvement. Journal of 

Environmental Sciences, 22(6), pp. 834-839.  

Ham, J.H., Yoon, C.G., Jeon, J.H. and Kim, H.C., (2007) Feasibility of a constructed wetland and 

wastewater stabilisation pond system as a sewage reclamation system for agricultural reuse in 

a decentralised rural area.  

Han, W., Shi, M., Chang, J., Ren, Y., Xu, R., Zhang, C. and Ge, Y. (2017) Plant species diversity 

reduces N2O but not CH4 emissions from constructed wetlands under high nitrogen levels. 

Environmental Science and Pollution Research, 1-11.  

Hanna, K. and Noble, B.F. (2015) Using a Delphi study to identify effectiveness criteria for 

environmental assessment. Impact Assessment and Project Appraisal, 33 (2), 116-125.  

Hathaway, S.K., Porter, M.D., Rodríguez, L.F., Kent, A.D. and Zilles, J.L. (2015) Impact of the 

contemporary environment on denitrifying bacterial communities. Ecological Engineering, 82 

469-473.  



244 
 

He, M.-., Hu, Q., Zhu, Q., Pan, K. and Li, Q. (2015) The feasibility of using constructed wetlands 

plants to produce bioethanol. Environmental Progress and Sustainable Energy, 34 (1), 276-281.  

He, N., Sun, Z., Zhang, Y. and Liu, M. (2012) Nitrogen and phosphorus removal from simulated 

wastewater with aquatic macrophytes. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84861706446&partnerID=40&md5=3a891c784ed86c7d4f9a1b21ef5c06fd [Accessed 10 

February 2015].  

He, F., Wu, Z., Tao, J., Cheng. and Fu, G., (2005) Nitrification and denitrification in the 

integrated vertical flow constructed wetlands. Huanjing Kexue/Environmental Science, 26(1), 

pp. 47-50.  

He, Q., Liang, W., He, F., Cheng, S. and Wu, Z., (2008) Activities of substrate oxidoreductase in 

the integrated vertical flow constructed wetland. Chinese Journal of Applied and 

Environmental Biology, 14(1), pp. 94-98.  

Hernández-Crespo, C., Oliver, N., Bixquert, J., Gargallo, S. and Martín, M. (2015) Comparison of 

three plants in a surface flow constructed wetland treating eutrophic water in a 

Mediterranean climate. Hydrobiologia. 

Holzer, K.A. and Lawler, S.P. (2015) Introduced reed canary grass attracts and supports a 

common native amphibian. Journal of Wildlife Management. 

Hsu, C., Hsieh, H., Yang, L., Wu, S., Chang, J., Hsiao, S., Su, H., Yeh, C., Ho, Y. and Lin, H., (2011) 

Biodiversity of constructed wetlands for wastewater treatment. Ecological Engineering, 37 

(10), 1533-1545.  

Hu, H.A., Chen, S.H., Hsu, C.W., Wang, C. and Wu, C.L. (2012) Development of sustainability 

evaluation model for implementing product service systems. International Journal of 

Environmental Science and Technology, 9 (2), 343-354.  

Hu, Y., Zhao, Y., Zhao, X. and Kumar, J.L.G. (2012) High rate nitrogen removal in an alum 

sludge-based intermittent aeration constructed wetland. Environmental Science and 

Technology, 46 (8), 4583-4590.  



245 
 

Hua, G.F., Zhu, W., Shen, J.Q., Zhang, Y.H. and Zeng, Y.T., (2013) The role of biofilm in clogging 

process in vertical flow constructed wetland. Applied Engineering in Agriculture, 29(1), pp. 61-

66. 

Huang, G. and Yeh, G., (2012) Integrated modeling of groundwater and surface water 

interactions in a manmade wetland. Terrestrial, Atmospheric and Oceanic Sciences, 23(5), pp. 

501-511. 

Huang, J., Reneau, R.B., Hagedorn, C., (2000) Nitrogen removal in constructed wetlands 

employed to treat domestic wastewater. Water Research 34 (9), 2582-2588. 

Hughes, D., Jewell, T., Lowther, J., Parpworth, N. and de Prez, P. (2002) Environmental Law. 4th 

ed. Oxford University Press.  

Iamchaturapatr, J., Yi, S.W. and Rhee, J.S. (2007) Nutrient removals by 21 aquatic plants for 

vertical free surface-flow (VFS) constructed wetland. Ecological Engineering, 29 (3), 287-293.  

Ilyas, H. and Masih, I. (2017) Intensification of constructed wetlands for land area reduction: a 

review. Environmental Science and Pollution Research, 24 (13), 12081-12091.  

Ismail, N.M., (2004) Management of wastewater disposal and reuse in coastal areas, Joint 

Conference on Water Resource Engineering and Water Resources Planning and Management 

2000, 30 July 2000 through 2 August 2000 2004.  

Ismail, N.M., (2002) Restoration of coastal wetlands and management of wastewater disposal. 

Bergen edn. 

Jahangir, M.M.R., Fenton, O., Müller, C., Harrington, R., Johnston, P., Richards, K.G. (2017) In 

situ denitrification and DNRA rates in groundwater beneath an integrated constructed 

wetland. Water Research, 111, pp. 254-264.  

Ji, B. and Chen, J., (2010) Study on using constructed wetland systems for rural high turbid and 

eutrophic water treatment in Chongqing of Shanghai. Beijing Daxue Xuebao (Ziran Kexue 

Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 46(3), pp. 407-412.  

Ji, B. and Chen, J., (2009) Low technology systems for rural high turbid and eutrophic water 

treatment in Shanghai: Constructed wetlands. In: 2009 International Conference on 

Environmental Science and Information Application Technology, ESIAT 2009. 4 July 2009 



246 
 

through 5 July 2009, Wuhan. 299-301. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

71049195761&partnerID=40&md5=dab906c880c56851cb342de3b5cf1a2c [Accessed 30 

October 2014].  

Ji, W., Wang, J., Fang, X. and Gu, S., (2012) Improvement and application of the Delphi method. 

In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA). 4026-

4029. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84872350355&partnerID=40&md5=4e0b2a0bf05ae1e49b7038d3c0f3e12e [Accessed 1 

February 2016].  

Jiang, C.L., Fan, X.Q., Cui, G.B., Zhang, Y.B., (2007) Removal of agricultural non-point source 

pollutants by ditch wetlands: implications for lake eutrophication control. Hydrobiology 581, 

319–327. 

Jiang, F.Y., Chen, X. and Luo, A.C. (2011) A comparative study on the growth and nitrogen and 

phosphorus uptake characteristics of 15 wetland species. Chemistry and Ecology, 27 (3), 263-

272.  

Jin, K.-. and Ji, Z.-. (2015) An integrated environment model for a constructed wetland - 

Hydrodynamics and transport processes. Ecological Engineering, 84 416-426. 

Johannesson, K.M., Kynkäänniemi, P., Ulén, B., Weisner, S.E.B. and Tonderski, K.S. (2015) 

Phosphorus and particle retention in constructed wetlands-A catchment comparison. 

Ecological Engineering, 80 20-31.  

Jones, G.D., Mogavero, K.A. and Wadzuk, B.M., (2009) Redesigning constructed stormwater 

wetlands: An integrated modeling approach to optimize form and function, World 

Environmental and Water Resources Congress 2009: Great Rivers, 17 May 2009 through 21 

May 2009, pp. 1488-1497.  

Jones, T. (1980) Options for the Future: A Comparative Analysis of Policy Oriented Forecasts. 

Praeger, New York, NY. 

Josimov-Dundjerski, J., Savic, R., Belic, A., Salvai, A. and Grabic, J. (2015) Sustainability of the 

constructed wetland based on the characteristics in effluent. Soil and Water Research, 10 (2), 

114-120.  



247 
 

Kadlec, R.H., Burgoon, P.S. and Henderson, M.E., (1997) Integrated natural systems for treating 

potato processing wastewater. Vienna, Austria edn.  

Karpiscak, M.M., Freitas, R.J., Gerba, C.P., Sanchez, L.R. and Shamir, E., (1999) Management of 

dairy waste in the Sonoran desert using constructed wetland technology. Sao Paulo, Braz edn.  

Kasak, K., Mander, Ü., Truu, J., Truu, M., Järveoja, J., Maddison, M. and Teemusk, A. (2015) 

Alternative filter material removes phosphorus and mitigates greenhouse gas emission in 

horizontal subsurface flow filters for wastewater treatment. Ecological Engineering, 77 242-

249.  

Keeney, S. (2015) The Delphi Technique. In: Gerrish, K. and Lathlean, J., eds. The Research 

Process in Nursing.  

Keohane, J., Carroll, P., Harrington, R. and Ryder, C., (2005) Integrated constructed wetlands 

for farmyard dirty water treatment: A site suitability assessment. Wageningen Academic 

Publishers.  

Klomjek, P. and Nitisoravut, S. (2005) Constructed treatment wetland: A study of eight plant 

species under saline conditions. Chemosphere, 58 (5), 585-593.  

Kong, L., He, F., Xia, S., Xu, D., Tang, G. and Wu, Z., (2013) Nitrogen removal of BBFR-IVCW 

system treating micro-polluted water under different C/N ratios. Chinese Journal of 

Environmental Engineering, 7(8), pp. 2818-2824.  

Kong, L., He, F., Xia, S., Xu, D., Zhang, Y., Xiao, E. and Wu, Z., (2013) A combination process of 

DMBR-IVCW for domestic sewage treatment. Fresenius Environmental Bulletin, 22(3), pp. 665-

674.  

Koottatep, T., Polprasert, C. and Hadsoi, S., (2006) Integrated faecal sludge treatment and 

recycling through constructed wetlands and sunflower plant irrigation.  

Kuehn, E. and Moore, J.A. (1995) Variability of treatment performance in constructed 

wetlands. Water Science and Technology, 32 (3), 241-250. 

Kumar, A.K., Chiranjeevi, P., Mohanakrishna, G. and Mohan, S.V., (2011) Natural attenuation of 

endocrine-disrupting estrogens in an ecologically engineered treatment system (eets) designed 



248 
 

with floating, submerged and emergent macrophytes. Ecological Engineering, 37(10), pp. 

1555-1562.  

Kuo, N.-., Hsiao, T.-. and Yu, Y.-. (2005) A Delphi-matrix approach to SEA and its application 

within the tourism sector in Taiwan. Environmental Impact Assessment Review, 25 (3), 259-

280.  

Kuschk, P., Wiessner, A., Seeger, E.M., Kästner, M., Kappelmeyer, U., Paredes, D. and 

Shtemenko, N.I. (2012) The Status of Research on Constructed Wetlands. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84883432442&partnerID=40&md5=80e1ba7d68bb233760f3f9692b5ba29d [Accessed 10 

February 2015].  

Ladu, J.L.C., Lu, X. and Osman, A.M., (2014) Experimental study on anoxic/oxic bioreactor and 

constructed wetland for rural domestic wastewater treatment. Research Journal of Applied 

Sciences, Engineering and Technology, 7(2), pp. 354-363. 

Langergraber, G. (2007) Simulation of the treatment performance of outdoor subsurface flow 

constructed wetlands in temperate climates. Science of the Total Environment, 380 (1-3), 210-

219.  

Lavrova, S. and Koumanova, B., (2011) Landfill leachate purification in a vertical flow 

constructed wetland with/without preliminary aerobic treatment. Journal of the University of 

Chemical Technology and Metallurgy, 46(3), pp. 299-304.  

Lavrova, S. and Koumanova, B., (2009) A comparative study of the nitrogen-rich pig slurry 

treatment in aerobic bioreactor and in constructed vertical flow wetland system. Journal of 

Environmental Protection and Ecology, 10(4), pp. 913-920.  

Lee, B., and Scholz, M. (2007) What is the role of Phragmites australis in experimental 

constructed wetland filters treating urban runoff? Ecological Engineering, 29 (1), 87-95.  

Lee, C., Fletcher, T.D. and Sun, G. (2009) Nitrogen removal in constructed wetland systems. 

Engineering in Life Sciences, 9 (1), 11-22.  

Lee, M.S., Drizo, A., Rizzo, D.M., Druschel, G., Hayden, N. and Twohig, E. (2010) Evaluating the 

efficiency and temporal variation of pilot-scale constructed wetlands and steel slag 



249 
 

phosphorus removing filters for treating dairy wastewater. Water research, 44 (14), 4077-

4086.  

Lee, S., Maniquiz-Redillas, M.C. and Kim, L.-. (2014) Settling basin design in a constructed 

wetland using TSS removal efficiency and hydraulic retention time. Journal of Environmental 

Sciences (China), 26 (9), 1791-1796.  

Leto, C., Tuttolomondo, T., La Bella, S., Leone, R. and Licata, M. (2013) Effects of plant species 

in a horizontal subsurface flow constructed wetland - phytoremediation of treated urban 

wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). 

Ecological Engineering, 61 282-291.  

Li, A.F., Xu, W.J., Ning, Y.Y. and Pan, T. (2014) Use of a constructed wetland designed to 

remediate eutrophicated landscaping water. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84915746478&partnerID=40&md5=d6c1dc369f2f8a01a295a3233f1a7b2a [Accessed 5 August 

2015].  

Li, F., Lu, L., Zheng, X. and Zhang, X. (2014) Three-stage horizontal subsurface flow constructed 

wetlands for organics and nitrogen removal: Effect of aeration. Ecological Engineering, 68 90-

96.  

Li, L., Li, Y., Da, L. and You, W., (2009) Treatment of effluent from the recycled paper mill by 

using integrated vertical-flow constructed wetland. Chung-kuo Tsao Chih/China Pulp and 

Paper, 28(9), pp. 43-46.  

Li, Z., Zhou, L. and Huang, Z., (2008) Phosphorus elimination of reclaimed water by different 

kinds of constructed wetlands.  

Liang, M., Zhang, C., Peng, C., Lai, Z., Chen, D., and Chen, Z., (2011) Plant growth, community 

structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecological 

Engineering, 37 (2), 309-316.   

Liao, W. and Chang, W. (2004) Heavy Metal Phytoremediation by Water Hyacinth at 

Constructed Wetlands at Taiwan. (42), 60--68. 



250 
 

Lin, Y., Jing, S., and Lee, D., (2003) The potential use of constructed wetlands in a recirculating 

aquaculture system for shrimp culture. Environmental Pollution, 123(1), pp. 107-113.  

Lin, Y., Jing, S., Lee, D., Chang, Y., Chen, Y., and Shih, K., (2005) Performance of a constructed 

wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. 

Environmental Pollution, 134(3), pp. 411-421. 

Lin, Y., Jing, S., Lee, D., Chang, Y., and Sui, H., (2010) Constructed wetlands for water pollution 

management of aquaculture farms conducting earthen pond culture. Water Environment 

Research, 82(8), pp. 759-768.  

Ling, Z., Yang, J.., Yu, G., Cheng, H., and Li, J., (2011) Influence of different plants and hydraulic 

loading on the nitrogen and phosphorus removal of constructed wetlands. Zhongguo Huanjing 

Kexue/China Environmental Science, 31 (11), 1815-1820.  

Linstone, H., and Turloff, M., (1975) The Delphi Method: Techniques and Applicaitions. London 

UK: Addison-Wesley. 

Liu, D., Ge, Y., Chang, J., Peng, C., Gu, B., Chan, G.Y.S. and Wu, X., (2009) Constructed wetlands 

in China: Recent developments and future challenges. Frontiers in Ecology and the 

Environment, 7(5), pp. 261-268.  

Liu, J.J., Dong, B., Guo, C.Q., Liu, F.P., Brown, L. and Li, Q. (2016) Variations of effective volume 

and removal rate under different water levels of constructed wetland. Ecological Engineering, 

95 652-664. 

Liu, X., Niu, H., Yan, H., Ding, Z., Lu, F., Ma, X., Yang, L. and Liu, Y., (2013) Research and 

application of high-efficiency eco-engineering rural sewage treatment system. Nongye 

Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(9), pp. 

184-191.   

Liu, X., Tang, T., Huang, S. and Luo, Y., (2011) Image processing based non-destructive method 

for measuring growth of constructed wetland plants, 5th International Conference on 

Bioinformatics and Biomedical Engineering, iCBBE 2011, 10 May 2011 through 12 May 2011 

2011.  



251 
 

Liu, X. and Tang, T.F.Z., (2014) Study of constructed wetland plant growth by computer image 

processing (CIP). Kunming edn.  

López, D., Fuenzalida, D., Vera, I., Rojas, K. and Vidal, G. (2015) Relationship between the 

removal of organic matter and the production of methane in subsurface flow constructed 

wetlands designed for wastewater treatment. Ecological Engineering, 83 296-304.  

Lu, S., Wan, Z., Li, F. and Zhang, X. (2016) Ammonia nitrogen adsorption and desorption 

characteristics of twenty-nine kinds of constructed wetland substrates. Research of 

Environmental Sciences, 29 (8), 1187-1194.  

Luyga, S. and Kiwanuka, S., (2003) Plankton composition, distribution and significance in a 

tropical integrated pilot constructed treatment wetland in Uganda.  

Maehlum, T., (1995). Treatment of landfill leachate in on-site lagoons and constructed 

wetlands. Guangzhou, China edn. Tarrytown, NY, United States: Pergamon Press Inc. 

Maehlum, T., Jenssen, P.D. and Warner, W.S., (1995) Cold-climate constructed wetlands. 

Guangzhou, China edn. Tarrytown, NY, United States: Pergamon Press Inc.   

Maehlum, T. and Stalnacke, P., (1999) Removal efficiency of three cold-climate constructed 

wetlands treating domestic wastewater: Effects of temperature, seasons, loading rates and 

input concentrations. Sao Paulo, Braz edn.  

Mander, T., Dotro, G., Ebie, Y., Towprayoon, S., Chiemchaisri, C., Nogueira, S.F., Jamsranjav, B., 

Kasak, K., Truu, J., Tournebize, J. and Mitsch, W.J. (2014) Greenhouse gas emission in 

constructed wetlands for wastewater treatment: A review. Ecological Engineering, 66 19-35. 

Mander, U., Maddison, M., Soosaar, K., Koger, H., Teemusk, A., Truu, J., Well, R. and Sebilo, M. 

(2015) The impact of a pulsing water table on wastewater purification and greenhouse gas 

emission in a horizontal subsurface flow constructed wetland. Ecological Engineering, 80 69-

78.  

Mander, Ü, Tournebize, J., Tonderski, K., Verhoeven, J.T.A. and Mitsch, W.J. (2016) Planning 

and establishment principles for constructed wetlands and riparian buffer zones in agricultural 

catchments. Ecological Engineering. 



252 
 

Mao, X.Y., Shao, X.H., Mao, J.Q., Yin, C., Wang, L., Sun, H.B., Tang, Z.L. and Chang, T.T., (2014) 

Environment research with progress of bioremediations for aquaculture effluent. Wuhan edn. 

Trans Tech Publications Ltd.  

Martinez-Guerra, E., Jiang, Y., Lee, G., Kokabian, B., Fast, S., Truax, D.D., Martin, J.L., 

Magbanua, B.S. and Gude, V.G. (2015) Wetlands for wastewater treatment. Water 

Environment Research, 87 (10), 1095-1126.  

Maucieri, C., Barbera, A.C., Vymazal, J. and Borin, M. (2017) A review on the main affecting 

factors of greenhouse gases emission in constructed wetlands. Agricultural and Forest 

Meteorology, 236 175-193.  

McHugh, S., Richards, K., Dunne, E.J., Harrington, R. and O'Flaherty, V., (2005) Microbiological 

studies on an integrated constructed wetland used for treatment of agricultural wastewaters. 

Wageningen Academic Publishers. 

McInnes, R., Smith, G., Greaves, J., Watson, D., Wood, N. and Everard, M. (2016) Multicriteria 

decision analysis for the evaluation of water quality improvement and ecosystem service 

provision. Water and Environment Journal. 

Means, M.M., Ahn, C. and Noe, G.B. (2017) Planting richness affects the recovery of vegetation 

and soil processes in constructed wetlands following disturbance. Science of the Total 

Environment, 579 1366-1378.  

Mench, M., Lepp, N., Bert, V., Schwitzguebel, J., Gawronski, S.W., Schroder, P. and 

Vangronsveld, J., (2010) Successes and limitations of phytotechnologies at field scale: 

Outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 

10(6), pp. 1039-1070.  

Mesquita, M.C., Albuquerque, A., Amaral, L. and Nogueira, R. (2013) Effect of vegetation on 

the performance of horizontal subsurface flow constructed wetlands with lightweight 

expanded clay aggregates. International Journal of Environmental Science and Technology, 10 

(3), 433-442.  

Meyer, D., Chazarenc, F., Claveau-Mallet, D., Dittmer, U., Forquet, N., Molle, P., Morvannou, 

A., Pálfy, T., Petitjean, A., Rizzo, A., Samsó Campà, R., Scholz, M., Soric, A. and Langergraber, G. 



253 
 

(2015) Modelling constructed wetlands: Scopes and aims - a comparative review. Ecological 

Engineering, 80 205-213.  

Mina, I.A.-., Costa, M., Matos, A., Calheiros, C.S.C. and Castro, P.M.L. (2011) Polishing domestic 

wastewater on a subsurface flow constructed wetland: Organic matter removal and microbial 

monitoring. International Journal of Phytoremediation, 13 (10), 947-958. 

Mitsch, W.J., Zhang, L., Waletzko, E. and Bernal, B. (2014) Validation of the ecosystem services 

of created wetlands: Two decades of plant succession, nutrient retention, and carbon 

sequestration in experimental riverine marshes. Ecological Engineering, 72 11-24.  

Mohammadpour, R., Shaharuddin, S., Chang, C.K., Zakaria, N.A., Ghani, A.A. and Chan, N.W. 

(2014) Prediction of water quality index in constructed wetlands using support vector machine. 

Environmental Science and Pollution Research. 

Molinos-Senante, M., Gómez, T., Caballero, R., Hernández-Sancho, F. and Sala-Garrido, R. 

(2015) Assessment of wastewater treatment alternatives for small communities: An analytic 

network process approach. Science of the Total Environment, 532 676-687.  

Morari, F. and Giardini, L. (2009) Municipal wastewater treatment with vertical flow 

constructed wetlands for irrigation reuse. Ecological Engineering, 35 (5), 643-653.  

Moreno-Mateos, D. and Comin, F.A. (2010) Integrating objectives and scales for planning and 

implementing wetland restoration and creation in agricultural landscapes. Journal of 

environmental management, 91 (11), 2087-2095.  

Moshiri, G. A. (1993) Constructed Wetlands for Water Quality Improvement. CRC Press. 

O’Neill, A., Foy, R.H. and Phillips, D.H. (2011) Phosphorus retention in a constructed wetland 

system used to treat dairy wastewater. Bioresource technology, 102 (8), 5024-5031.  

Oon, Y.-., Ong, S.-., Ho, L.-., Wong, Y.-., Dahalan, F.A., Oon, Y.-., Lehl, H.K. and Thung, W.-. 

(2016) Synergistic effect of up-flow constructed wetland and microbial fuel cell for 

simultaneous wastewater treatment and energy recovery. Bioresource technology, 203 190-

197.  



254 
 

Page, D.W., Khan, S.J. and Miotlinski, K. (2011) A systematic approach to determine herbicide 

removals in constructed wetlands using time integrated passive samplers. Journal of Water 

Reuse and Desalination, 1 (1), 11-17.  

Paing, J., Guilbert, A., Gagnon, V. and Chazarenc, F. (2015) Effect of climate, wastewater 

composition, loading rates, system age and design on performances of French vertical flow 

constructed wetlands: A survey based on 169 full scale systems. Ecological Engineering, 80 46-

52.  

Pan, X., Ping, Y., Cui, L., Li, W., Zhang, X., Zhou, J., Yu, F. and Prinzing, A. (2017) Plant Litter 

Submergence Affects the Water Quality of a Constructed Wetland. PLoS ONE, 12 (1). 

Park, W.H. (2009) Integrated constructed wetland systems employing alum sludge and oyster 

shells as filter media for P removal. Ecological Engineering, 35 (8), 1275-1282.  

Park, W.H. and Polprasert, C. (2008) Roles of oyster shells in an integrated constructed wetland 

system designed for P removal. Ecological Engineering, 34 (1), 50-56. 

Paruch, A.M., Mæhlum, T., Obarska-Pempkowiak, H., Gajewska, M., Wojciechowska, E. and 

Ostojski, A. (2011) Rural domestic wastewater treatment in Norway and Poland: Experiences, 

cooperation and concepts on the improvement of constructed wetland technology. Water 

Science and Technology, 63 (4), 776-781.   

Pedescoll, A., Sidrach-Cardona, R., Hijosa-Valsero, M. and Bécares, E. (2015) Design parameters 

affecting metals removal in horizontal constructed wetlands for domestic wastewater 

treatment. Ecological Engineering, 80 92-99.  

Pei, W.W., Xie, X., Ong, P., Trueman, B.F., McVicar, M.A., Walsh, M.E. and Gagnon, G.A. (2013) 

Water reclamation and reuse. Water Environment Research, 85 (10), 1308-1321.  

Peng, L., Hua, Y., Cai, J., Zhao, J., Zhou, W. and Zhu, D. (2014) Effects of plants and temperature 

on nitrogen removal and microbiology in a pilot-scale integrated vertical-flow wetland treating 

primary domestic wastewater. Ecological Engineering, 64 285-290.  

Phillips, D.H. (2010), Greenmount Hill Farm CWS, wastewater. 

Puchlik, M. (2016) Application of constructed wetlands for treatment of wastewater from fruit 

and vegetable industry. Journal of Ecological Engineering, 17 (1), 131-135. 



255 
 

Raffensperger, J.F., Prabodanie, R.A.R. and Kostel, J.A. (2017) A smart market for nutrient 

credit trading to incentivize wetland construction. Journal of Hydrology, 546 248-261.  

Rai, P.K., (2009) Heavy metal phytoremediation from aquatic ecosystems with special 

reference to macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 

pp. 697-753.  

Ranieri, E., Gorgoglione, A. and Solimeno, A. (2013) A comparison between model and 

experimental hydraulic performances in a pilot-scale horizontal subsurface flow constructed 

wetland. Ecological Engineering, 60 45-49.  

Read, J., Fletcher, T.D., Wevill, T. and Deletic, A. (2010) Plant traits that enhance pollutant 

removal from stormwater in biofiltration systems. International Journal of Phytoremediation, 

12 (1), 34-53. 

Richter, K.M., Margetts, J.R., Saul, A.J., Guymer, I. and Worrall, P., (2003) Baseline hydraulic 

performance of the Heathrow constructed wetlands subsurface flow system.  

Rizzo, A. and Langergraber, G. (2016) Novel insights on the response of horizontal flow 

constructed wetlands to sudden changes of influent organic load: A modeling study. Ecological 

Engineering, 93 242-249. 

Rodríguez, M. and Brisson, J. (2015) Pollutant removal efficiency of native versus exotic 

common reed (Phragmites australis) in North American treatment wetlands. Ecological 

Engineering, 74 364-370. 

Rodriguez, M. and Brisson, J. (2016) Does the combination of two plant species improve 

removal efficiency in treatment wetlands? Ecological Engineering, 91 302-309. 

Romain, V., Sylvie, D. and David, B. (2015) Water residence time and pesticide removal in pilot-

scale wetlands. Ecological Engineering, 85 76-84.  

Romero-Aguilar, M., Colin-Cruz, A., Sanchez-Salinas, E. and Ortiz-Hernandez, M.L., (2009) 

Wastewater treatment by a system pilot wetlands: Assessment of the removal of organic load. 

Revista Internacional de Contaminacion Ambiental, 25(3), pp. 157-167.  

Rowe, G., and Wright, G., (1999) The Delphi Technique as a forecasting tool: Issues and 

Analysis. International Journal of Forecasting, 15(4), 353-375 



256 
 

Roy, R., Chan, N.W. and Ahmed, Q.N. (2014) A Delphi study to determine sustainability factors: 

The case of rice farming in Bangladesh. Journal of Sustainability Science and Management, 9 

(1), 56-68.  

Ryder, C., Carroll, P., Harrington, R. and Keohane, J., (2005) Integrated constructed wetlands: 

Regulatory policy and practical experience in an Irish planning context. Wageningen Academic 

Publishers.  

Saeed, T., Al-Muyeed, A., Afrin, R., Rahman, H. and Sun, G. (2014) Pollutant removal from 

municipal wastewater employing baffled subsurface flow and integrated surface flow-floating 

treatment wetlands. Journal of Environmental Sciences (China), 26 (4), 726-736. 

Saeed, T., Paul, B., Afrin, R., Al-Muyeed, A. and Sun, G. (2016) Floating constructed wetland for 

the treatment of polluted river water: A pilot scale study on seasonal variation and shock load. 

Chemical Engineering Journal, 287 62-73.  

Saeed, T. and Sun, G. (2012) A review on nitrogen and organics removal mechanisms in 

subsurface flow constructed wetlands: Dependency on environmental parameters, operating 

conditions and supporting media. Journal of environmental management, 112 429-448.  

Salem, Z.B., Laffray, X., Ashoour, A., Ayadi, H. and Aleya, L. (2014) Metal accumulation and 

distribution in the organs of Reeds and Cattails in a constructed treatment wetland (Etueffont, 

France). Ecological Engineering, 64 1-17.  

Salvato, M. and Borin, M. (2010) Effect of different macrophytes in abating nitrogen from a 

synthetic wastewater. Ecological Engineering, 36 (10), 1222-1231.  

Salvato, M., Borin, M., Doni, S., Macci, C., Ceccanti, B., Marinari, S. and Masciandaro, G. (2012) 

Wetland plants, micro-organisms and enzymatic activities interrelations in treating N polluted 

water. Ecological Engineering, 47 36-43.  

Samsó, R., García, J., Molle, P. and Forquet, N. (2016) Modelling bioclogging in variably 

saturated porous media and the interactions between surface/subsurface flows: Application to 

Constructed Wetlands. Journal of environmental management, 165 271-279.  



257 
 

Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J.M. and Kryński, K. 

(2004) Phytoextraction crop disposal—an unsolved problem. Environmental Pollution, 128 (3), 

373-379.  

Sehar, S., Naz, I., Khan, S., Naeem, S., Perveen, I., Ali, N. and Ahmed, S. (2016) Performance 

evaluation of integrated constructed wetland for domestic wastewater treatment. Water 

Environment Research, 88 (3), 280-287. 

Selvamurugan, M., Doraisamy, P. and Maheswari, M. (2010) An integrated treatment system 

for coffee processing wastewater using anaerobic and aerobic process. Ecological Engineering, 

36 (12), 1686-1690.  

Shafiee, M., Saffarian, S. and Zaredar, N. (2015) Risk Assessment of Human Activities on 

Protected Areas: A Case Study. Human and Ecological Risk Assessment, 21 (6), 1462-1478.  

Shao, L. and Chen, G.Q. (2015) Embodied water accounting and renewability assessment for 

ecological wastewater treatment. Journal of Cleaner Production. 

Shelef, O., Gross, A. and Rachmilevitch, S. (2013) Role of plants in a constructed Wetland: 

Current and new perspectives. Water (Switzerland), 5 (2), 405-419.  

Shelton, K., and Adair Creghan, K., (2014) Demystifying the Delphi Method. Handbook of 

Research on Scholarly Publishing and Research Methods. Chapter 19. 

Skulmoski, G., J.; Hartman, F., T.; and Krahn, J. (2007) The Delphi Method for Graduate 

Research. Journal of Information Technology Education, 6. 

Smyk, J. and Ignatowicz, K. (2015) COD fractions changes during sewage treatment with 

constructed wetland. Journal of Ecological Engineering, 16 (3), 43-48.  

Starkl, M., Brunner, N., Amerasinghe, P., Mahesh, J., Kumar, D., Asolekar, S.R., Sonkamble, S., 

Ahmed, S., Wajihuddin, M., Pratyusha, A. and Sarah, S. (2015) Stakeholder views, financing and 

policy implications for reuse of wastewater for irrigation: A case from Hyderabad, India. Water 

(Switzerland), 7 (1), 300-328.  

Sun, H., Wang, Z., Gao, P. and Liu, P. (2013) Selection of aquatic plants for phytoremediation of 

heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35 (2), 355-364.  



258 
 

Tanaka, N., Jinadasa, K.B.S.N., Werellagama, D.R.I.B., Mowjood, M.I.M. and Ng, W.J., (2006) 

Constructed tropical wetlands with integrated submergent-emergent plants for sustainable 

water quality management. Journal of Environmental Science and Health - Part A 

Toxic/Hazardous Substances and Environmental Engineering, 41(10), pp. 2221-2236.  

Tanner, C.C. (1996) Plants for constructed wetland treatment systems — A comparison of the 

growth and nutrient uptake of eight emergent species. Ecological Engineering, 7 (1), 59-83. 

Tomenko, V., Ahmed, S. and Popov, V. (2007) Modelling constructed wetland treatment 

system performance. Ecological Modelling, 205 (3-4), 355-364. 

Trang, N.T.D., Konnerup, D., Schierup, H.H., Chiem, N.H., (2010) Kinetics of pollutant removal 

from domestic wastewater in a tropical horizontal subsurface flow constructed wetland 

system: effects of hydraulic loading rate. Ecological Engineering 36, 527e535. 

Tuncsiper, B., (2007) Removal of nutrient and bacteria in pilot-scale constructed wetlands. 

Journal of Environmental Science and Health, Part A 42 (8), 1117-1124. 

Upadhyay, A.K., Bankoti, N.S. and Rai, U.N. (2016) Studies on sustainability of simulated 

constructed wetland system for treatment of urban waste: Design and operation. Journal of 

environmental management, 169 285-292. 

Utility Regulator (2014) Utility Regulator Electricity Gas Water. Available from: 

http://www.uregni.gov.uk/ [Accessed 10/12/2014]. 

Waletzko, E.J. and Mitsch, W.J. (2014) Methane emissions from wetlands: An in situ side-by-

side comparison of two static accumulation chamber designs. Ecological Engineering, 72 95-

102.  

Wang, D., Jin, X., Zhang, H., Zhang, X., Zeng, H., You, S., Zhao, W., Xu, Z., and Wu, Y., (2009) 

Research progress on phosphorus removal in substrates of constructed wetlands. In: 3rd 

International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009. Available 

from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

72749101794&partnerID=40&md5=260a314867aad219efd79afb219564fa [Accessed 10 

February 2015].  



259 
 

Wang, H. (2012) Influence of hydraulic loading rate on horizontal zeolite wetland effluent 

quality. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84869408393&partnerID=40&md5=4cf3b6096e70723b10512673ff80d6a5 [Accessed 19 

February 2015].  

Wang, H., Huang, C., Ge, Y., Wu, J.Z. and Chang, J. (2014) The performance of species mixtures 

in nitrogen and phosphorus removal at different hydraulic retention times. Polish Journal of 

Environmental Studies, 23 (3), 917-922.  

Wang, Q., Yang, L. and Wu, Z. (2010) Treatment efficiency of integrated vertical-flow 

constructed wetland for saline wastewater. Wuhan University Journal of Natural Sciences, 15 

(6), 544-548.  

Wang, X., Tian, Y., Zhao, X., Wu, Q., Peng, S. and Yan, L. (2016) Optimizing the operation of 

combined oxidation pond-constructed wetland ecosystems used for treating composite 

wastewater. Ecological Engineering, 88 64-76.  

Wang, Y. and Deng, W., (2006) Establishment of index system of sustainability measurement 

on wetland water environment. Wetland Science, 4(4), pp. 253-257.  

Wang, Y., Wang, J., Zhao, X., Song, X. and Gong, J. (2016) The inhibition and adaptability of four 

wetland plant species to high concentration of ammonia wastewater and nitrogen removal 

efficiency in constructed wetlands. Bioresource technology, 202 198-205.  

Wanko, A., Tapia, G., Mosé, R. and Gregoire, C. (2011) A new empirical law to accurately 

predict solute retention capacity within horizontal flow constructed wetlands. Ecological 

Engineering, 37 (4), 636-643. 

Wei, M., Rakoczy, J., Vogt, C., Harnisch, F., Schumann, R. and Richnow, H.H. (2015) 

Enhancement and monitoring of pollutant removal in a constructed wetland by microbial 

electrochemical technology. Bioresource technology, 196 490-499.  

Wen, Y., Xu, C., Liu, G., Chen, Y. and Zhou, Q. (2012) Enhanced nitrogen removal reliability and 

efficiency in integrated constructed wetland microcosms using zeolite. Frontiers of 

Environmental Science and Engineering in China, 6 (1), 140-147. 



260 
 

White, K.D., (1995) Enhancement of nitrogen removal in subsurface flow constructed wetlands 

employing a 2-stage configuration, an unsaturated zone, and recirculation. Guangzhou, China 

edn. Tarrytown, NY, United States: Pergamon Press Inc.   

Williams, J.B. (2002) Phytoremediation in wetland ecosystems: Progress, problems, and 

potential. Critical Reviews in Plant Sciences, 21 (6), 607-635.  

Wu, H., Yuan, Z., Zhang, J., Fan, J. and Hu, Z. (2016) Greenhouse gas emissions from large-scale 

constructed wetlands. Research of Environmental Sciences, 29 (8), 1195-1199.  

Wu, H., Zhang, J., Ngo, H.H., Guo, W. and Liang, S. (2017) Evaluating the sustainability of free 

water surface flow constructed wetlands: Methane and nitrous oxide emissions. Journal of 

Cleaner Production, 147 152-156.  

Wu, S., Austin, D., Liu, L. and Dong, R. (2011) Performance of integrated household 

constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 

37 (6), 948-954.  

Wu, S., Carvalho, P.N., Müller, J.A., Manoj, V.R. and Dong, R. (2016) Sanitation in constructed 

wetlands: A review on the removal of human pathogens and fecal indicators. Science of the 

Total Environment, 541 8-22.  

Wu, S., Chang, J., Dai, Y., Wu, Z., and Liang, W. (2013) Treatment performance and 

microorganism community structure of integrated vertical-flow constructed wetland plots for 

domestic wastewater. Environmental Science and Pollution Research, 20 (6), 3789-3798.  

Xiao, E., Liang, W., He, F., Cheng, S., and Zhen-Bin Wu (2010) Performance of the combined 

SMBR-IVCW system for wastewater treatment. Desalination, 250 (2), 781-786.  

Xie, X., He, F., Xu, D., Dong, J., Cheng, S., and Wu, Z. (2012) Application of large-scale integrated 

vertical-flow constructed wetland in Beijing Olympic forest park: Design, operation and 

performance. Water and Environment Journal, 26 (1), 100-107.  

Xiong, J., Guo, G., Mahmood, Q. and Yue, M. (2011) Nitrogen removal from secondary effluent 

by using integrated constructed wetland system. Ecological Engineering, 37 (4), 659-662.  



261 
 

Xiong, J., Qin, Y., Mahmood, Q., Liu, H. and Yang, D. (2011) Phosphorus removal from 

secondary effluents through integrated constructed treatment system. Marine pollution 

bulletin, 63 (5-12), 98-101.  

Xu, J., Shi, Y., Zhang, G., Liu, J. and Zhu, Y. (2014) Effect of hydraulic loading rate on the 

efficiency of effluent treatment in a recirculating puffer aquaculture system coupled with 

constructed wetlands. Journal of Ocean University of China, 13 (1), 146-152.  

Yazicigil, H. et al.,(2011) 'Impacts of Decreasing Recharge Rates on Sustainable Groundwater 

Management', in Baba, A., et al.,(ed.) Climate Change and its Effects on Water Resources: 

Issues of National and Global Security. Netherlands: Springer, pp. 43-44. 

Yin, W., Li, P., Qiu, Q., Song, Z. and Xi, J., (2006) Contribution of macrophyte assimilation in 

constructed wetland to nitrogen and phosphorous removal. Chinese Journal of Ecology, 25(2), 

pp. 218-221.  

Yu, H., Yu, J., Xu, L. and Kim, Y., (2013) Nitrogen removal and effects analysis of hydraulics in an 

integrated wetland. Chinese Journal of Environmental Engineering, 7(9), pp. 3357-3362.  

Yu, J., Chen, W., Shui, Y., Liu, J., Ho, W., and Zhang, S., (2011) Research on wastewater 

treatment through integrated constructed wetlands. In: 2nd International Conference on 

Multimedia Technology, ICMT 2011. 26 July 2011 through 28 July 2011, Hangzhou. 1197-1201. 

Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-

80052944170&partnerID=40&md5=f11c229964013d189559f0543ab71988 [Accessed 30 

October 2014].  

Zhang, J., Cheng, S., He, F., Liang, W. and Wu, Z. (2008) Effects of Cd2+ and Pb2+ on the 

substrate biofilms in the integrated vertical-flow constructed wetland. Journal of 

Environmental Sciences, 20 (8), 900-906.  

Zhang, J., Wang, Q., Fan, J., Xie, H., Liu, C., Liang, S., Hu, Z., Yang, Z. and Zhao, C. (2015) 

Comparisons of microbial abundance and community among different plant species in 

constructed wetlands in summer. Ecological Engineering, 82 376-380.  

Zhang, L., Mu, L., Xiong, Y., Xi, B., Li, G. and Li, C. (2015) The development of a natural heating 

technology for constructed wetlands in cold climates. Ecological Engineering, 75 51-60.  



262 
 

Zhang, L., Scholz, M., Mustafa, A. and Harrington, R. (2009) Application of the self-organizing 

map as a prediction tool for an integrated constructed wetland agroecosystem treating 

agricultural runoff. Bioresource technology, 100 (2), 559-565.  

Zhang, L., Scholz, M., Mustafa, A. and Harrington, R. (2008) Assessment of the nutrient 

removal performance in integrated constructed wetlands with the self-organizing map. Water 

research, 42 (13), 3519-3527.  

Zhang, S., Pang, S., Wang, P., Wang, C., Guo, C., Addo, F.G. and Li, Y. (2016) Responses of 

bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes 

and nitrate. Scientific Reports, 6. 

Zhang, Y., Cui, L., Li, W., Zhang, M., Zhao, X. and Wang, Y. (2014) Performance evaluation of an 

integrated constructed wetland used to treat a contaminated aquatic environment. Wetlands 

Ecology and Management, 1-15.  

Zhang, Y., Cui, L., Li, W., Zhang, M. and Zhang, Y. (2014) Analysis on phosphorus removal in 

series horizontal subsurface flow constructed wetland based on hydraulic model. Nongye 

Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30 (19), 

174-181.  

Zhao, Y. and Qi, J., (2012) Plants selection for domestic sewage treatment in Jilin City. In: World 

Automation Congress Proceedings. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84870811188&partnerID=40&md5=2366b8421bc80d36d7fedfd713521026 [Accessed 10 

February 2015].  

Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H.H., Guo, W., Ge, Y. and Xiong, J. (2016) 

Effects of interspecific competition on the growth of macrophytes and nutrient removal in 

constructed wetlands: A comparative assessment of free water surface and horizontal 

subsurface flow systems. Bioresource technology, 207 134-141. 

Zhou, Q., He, F., Liping, Z., Wang, Y. and Wu, Z. (2009) Characteristics of the microbial 

communities in the integrated vertical-flow constructed wetlands. Journal of Environmental 

Sciences, 21 (9), 1261-1267.  



263 
 

Zhou, Q., Wu, Z., Fu, G., Cheng, S., and He, F. (2005) Temporal and spatial characteristics of 

substrate enzyme activities and bacteria physiological groups in constructed wetland. Huanjing 

Kexue/Environmental Science, 26 (2), 108-112.  

Zhou, Q., Wu, Z., Fu, G., Cheng, S., and He, F. (2005) Temporal and spatial characteristics of 

substrate enzyme activities and bacteria physiological groups in constructed wetland. Huanjing 

Kexue/Environmental Science, 26 (2), 108-112.  

Zhu, G., Wang, S., Feng, X., Fan, G., Jetten, M.S.M. and Yin, C. (2011) Anammox bacterial 

abundance, biodiversity and activity in a constructed wetland. Environmental Science and 

Technology, 45 (23), 9951-9958.  

 

  



264 
 

APPENDICES 

  



265 
 

APPENDIX A: STAKEHOLDER ENGAGEMENT FEEDBACK BOOK 

  



266 
 

 

School of Built Environment 

 

 

Integrated Constructed Wetlands: Stakeholder Engagement Feedback 

Book 

 

Name  

Job Title  

Employer  

Discipline  

 

 



267 
 

Contents 

Stakeholder Engagement Brief: Integrated Constructed Wetlands 

Presentation Notes 

Research Findings 

Discussion Points 

1. Knowledge of ICWs and their relevance to policy frameworks and sustainable development 

strategies; 

 2. Identification and weighting of significant variables for overall performance; 

 3. Identification and weighting of key performance criteria for overall ICW appraisal; 

 4. The future of ICW installations; 

 5. Best Practice Guidance Document. 

General Comments 

Contact Details 

 

 

 

 

 

 

 

 

 

 

 

 



268 
 

Stakeholder Engagement Brief: Integrated Constructed Wetlands 

Introduction 

Clean water is crucial for our survival, and as human populations continue to grow, it is becoming 

increasingly apparent that the protection of limited water resources is critical. As such, there are a number 

of regulations in place with regard to water protection, with the European Water Framework Directive 

2000/60/EC (WFD) being the most integrated. The promotion of sustainability has been included within 

the WFD, and as such, water protection is also integrated into EU sustainable development strategies. 

Thus, legislative requirements coupled with global pressures to develop sustainably have created an 

industry which combines environmental protection with innovative engineering techniques, allowing 

developers and businesses to work responsibly whilst complying with legislative requirements. 

Consequently, although there are now numerous engineering techniques available to remediate and 

prevent water pollution, the use of Constructed Wetlands is a method which is proving to be a potentially 

viable and naturally available solution. 

 

Constructed Wetlands 

Constructed Wetlands are engineered systems designed to simulate the bio-filtration processes of a 

natural system in order to remediate contaminated wastewater and mitigate the pollution of nearby 

water bodies. This is done by using a number of strategically chosen aquatic plants, suited to the specific 

site, which filter and remove contaminants from the water as it flows down the gradient of the land. 

Constructed wetlands are designed to work as an integrated ecosystem, combining the functions of the 

natural environment with human activities, to help enhance overall water quality i.e. they are a natural 

means of treating wastewater, but through a controlled and manageable method. The constructed 

wetland principle has been applied to the treatment of a range of influents from sources such as dairy 

farming, abattoirs, industrial effluents, domestic sewage, combined sewage and stormwater flows. As the 

polluting influent flows through the ponds, it is subjected to a number of integrated processes such as 

sedimentation, filtration, nitrification, denitrification, and sorption and plant uptake until it exits the pond 

system into a nearby watercourse as seen in the diagram below.  
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Constructed wetlands can take various forms depending on their application and can be free flowing 

(FWS) or have water flow beneath the surface, either horizontally (HSSF) or vertically (VSSF). Some 

systems employ a hybrid approach which uses a combination of the different designs to try to improve 

efficiency. Another type of constructed wetland is an Integrated Constructed Wetland (ICW) which is a 

more recent variation of previous designs. A summary of the different wetland types and their key designs 

features can be seen in the table below. 

 

Summary Table of Constructed Wetland Design 

Variables FWS HSSF VSSF Hybrid ICW 

Soil Depth >15mm >300mm >500mm Various 150mm 

Water Depth >285mm <200mm <250mm <300mm <300mm 

Plant Type Emergent 

and/or Floating 

Emergent Emergent Various Emergent 

Surface Area 20-40m2/pe 5-10m2/pe 1-3m2/pe 3-10m2/pe 20-40m2/pe 

No. Ponds 1+ 2-5 2-5 Various >4 

Application Tertiary 

treatment of 

stormwater and 

municipal 

wastewater 

Municipal, 

domestic, 

industrial, food-

processing, 

agriculture, 

landfill. 

Landfill, 

domestic, 

municipal. 

Municipal, 

domestic, 

industrial, food-

processing, 

agriculture, 

landfill 

Municipal, 

domestic, 

industrial, food-

processing, 

agriculture, 

landfill 
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ICWs are a relatively new addition to the constructed wetland concept and their design is based on the 

concept of FWS wetlands, in that the water flows freely above the surface of the soil. However, ICWs 

differ from FWS wetlands in that they are an integrated method to managing the natural resources of 

land and water. ICWs use a holistic approach to integrating the concept of constructed wetlands into the 

local landscape, soils, topography, and biodiversity, to create a sustainable and viable wastewater 

treatment system which mimics the processes and developments of a natural wetland. Over the last 40 

years, research on constructed wetlands for various types of wastewater treatments has expanded and 

enhanced understanding of the processes and interactions involved. Despite this, there still remains a 

number of unknowns, providing great prospect for further research which will develop a better 

appreciation of the concept of constructed wetlands and their potential as sustainable alternatives to 

traditional wastewater treatment works.   

Northern Ireland Water has recently implemented the first ICW in the UK for the treatment of domestic 

and municipal waste at Stoneyford. It is hoped that this wetland proves to be an effective and sustainable 

alternative to traditional wastewater treatment works for NIW and subsequently, they have invested 

considerable amounts in providing substantial apparatus for the collection, measurement and monitoring 

of treatment performance. Overall, it is foreseen that an evaluation can be made on ICWs for the 

treatment of domestic waste, so that they can be appraised in the context of political frameworks and 

sustainable development objectives. It is envisaged that this will then support the development of a ‘Best 

Practice’ guide to assist in the decision making process for industries wishing to implement constructed 

wetlands for the treatment of wastewater. 

 

Research Project 

This research project is supported through the Department of Employment and Learning (DEL) Co-

operative Awards in Science & Technology (CAST) scheme; the industrial partner is effectively NI Water, 

with direct involvement from White Young Green (Consulting Engineers). The overall aim of this project 

is as follows: 

‘To Develop a Deeper Understanding of the Performance and Analysis of Integrated Constructed 

Wetlands for the Treatment of Domestic Wastewater.’ 

In order to do have an adequate understanding of ICW performance, we need to identify the key variables 

that influence this performance. Thus, we will compile a list of variables and performance criteria as 

identified by using a combination of literature review, previous case studies and the opinions of key 

professionals from various industries. From this, we can then appraise the information and develop a 

more precise list of key variables of which we can focus our attention, in order to develop a more efficient 

design methodology for future ICW implementation. 
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 Aim of the Stakeholder Engagement Session 

The aim of the stakeholder engagement1 session is to gain knowledge and understanding of the attitudes 

and opinions of key stakeholders on the factors that influence ICW performance so that the significant 

variables for optimum ICW performance can be determined. Findings from the stakeholder engagement 

session will be used to inform the ICW Performance assessment and aid the development of an ICW ‘Best 

Practice’ Design Guide for use by key stakeholders.  

 

Objectives 

In order to satisfy the aims of the stakeholder engagement sessions, the following objectives need to be 

achieved: 

 Develop an understanding of the attitudes and opinions of key stakeholders on ICWs as an 

alternative to traditional wastewater treatment works; 

 Identify how the use of ICWs as a wastewater treatment method is perceived by stakeholders from 

various backgrounds; 

 Develop a perception of how stakeholders relate ICWs to current EU policy frameworks and 

sustainable development objectives; 

 Identify key variables that impact on ICW performance and establish a weighting of significance so 

that a more focused approach can be taken towards research; 

 Identify key appraisal contexts of ICW installations and establish a weighting of significance; 

 Develop an understanding of how stakeholders envisage future ICW application; 

 Gain an understanding of stakeholder attitudes towards an ‘ICW Best Practice’ Guidance Document, 

including their views on the requirements within particular industries/applications, the format of 

the document, key points to include and accessibility. 

 

Process of the Stakeholder Engagement Session 

It is envisaged that these objectives will be met through a structured discussion2 with the stakeholders 

involving a series of questions; this will be facilitated by a Chairman after the delivery of a short 

presentation on ICWs, their processes, performance variables and literature findings. The key questions 

or discussion points for stakeholders will be: 

 Knowledge of ICWs and their relevance to and context within Policy Frameworks and Sustainable 

Development Objectives; 

 Identification of the listed variables which are deemed to be significant to influencing overall ICW 

performance; 
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 Weighting of the listed variables in order of significance to influencing performance; 

 Weighting of the listed variables in order of priority for further study; 

 Opinions on the future of ICWs in terms of implementation and additional/alternative applications; 

 Opinions and comments for an ICW ‘Best Practice’ Design Guide to develop an applied document 

applicable to various industries and applications. 

After the structured discussion around these key points, the Chair will seek broadening of the discussions 

so that a more detailed and interactive understanding of opinions and attitudes is developed.  

The entire session will be audio recorded so that a transcript can be written up; also, stakeholders will be 

asked to record written answers and comments on a provided pro-forma. These will be collected at the 

end of the session and each stakeholder will subsequently receive a copy of the summarised notes and 

findings of the session. 

 

Recording of Results 

During the session an audio recording will take place and stakeholders will be asked to record their own 

comments in writing throughout. This information will then be used as a source of data which will then 

be analysed and interpreted.  

 

Summary and Feedback 

Results from the session will be written up in the form of a report and distributed to each of the 

stakeholders for further comments or clarification. Any comments written on the stakeholders’ notes 

sheets will remain anonymous. Once this is completed, final results will be compiled and included within 

the research thesis. 

 

1. Stakeholder engagement is the process by which an organisation involves people who may be affected by 

the decisions it makes or can influence the implementation of its decisions. They may support or oppose 

the decisions, be influential in the organization or within the community in which it operates, hold 

relevant official positions or be affected in the long term. (Wikipedia, 2015) 

2. In a structured discussion, each participant has a chance to voice her comments about the various 

options. This might include what she sees as the option’s strengths and weaknesses, likely impacts, or 

major concerns. One person talks at a time and it is everyone else’s job to listen carefully. (Tom La Force, 

2013) 
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Research Findings 

Key Issues Chart 
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Comments: 

 

Appraisal Context Chart 
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Discussion Points: 

Please record your comments on each of the discussion points in the space provided.  

 

1) Please detail your current knowledge of ICWs, including their relevance to and context within Policy 

Frameworks and Sustainable Development Objectives; 

 

 

2) Key Variables: 

 

a) Based on your previous knowledge and today’s presentation can you identify the key variables 

which impact overall ICW performance; 
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b) Can you now weight the agreed variables in order of significance to influencing performance using 

the pyramid below;  
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3) Performance Criteria; 

a) Based on your previous knowledge and today’s presentation can you identify the key 

performance criteria for overall ICW appraisal; 

 

b) Can you now weight the agreed criteria in order of significance to overall ICW performance 

appraisal;  

You can divide the pyramid into further sections to represent level of significance 

within each of the 3 levels.  

Definitions: 

Significant = Has, or is likely to have a major effect on ICW performance; 

Important = Has, or is likely to have a strong influence on ICW performance; 

Considered = Does not have significant effect or strong influence but must still be 

considered as contributing to overall ICW performance. 

 

Comments: 
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4) What is your opinion on the future of ICWs in terms of implementation and additional/alternative 

applications; 

 

5) What are your opinions on an ICW ‘Best Practice’ Design Guide to develop a document applicable to 

various industries and applications; what key elements should be included within the document? 

You can divide the pyramid into further sections to represent level of significance 

within each of the 3 levels.  

Definitions: 

Significant = Is critical to the overall appraisal of ICW performance; 

Important = Is of notable consideration in the overall appraisal of ICW 

performance; 

Considered = Does not require significant or important attention when appraising 

overall ICW performance but must still be considered.
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General Comments 

Please add any further comments you have in relation to ICWs and/or todays’ session. 

 

 

Contact Details: 

Please insert your preferred contact details below if you wish to receive further information regarding 

todays’ session. 
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APPENDIX B: IMAGE PRO AREA ANALYSIS METHODS 
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Step 1: Open Image Pro, Select File and Open Image. 

 

Step 2: Calibrate the image using known measurements from Google Earth Pro. 

 

 

Step 3: Using the measuring tool, check the distance is correct. The image is now calibrated and 

ready for measurements to be taken. 
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Step 4: Using the Polygon Selection Tool, select the area to be analysed as represented by the 

green line 

 

 

Step 5: Mask the remainder of the image by clicking Options, ROI Mask 
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Step 6: In order to select the threshold, Select the threshold symbol and using the dropper tool, 

click the areas of the image measure. 

 

 

Step 7: The software will then select all pixels within the image that are of that threshold; 

continue selecting pixels until the area required is selected as below.  
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Step 8: Within the threshold window, select the ‘Count’ feature which will calculate the area of 

the thresholds selected and provide the areas in m2 in a table at the bottom. 

 

 

Step 9: The data table can then be exported to Excel for future use as demonstrated below. 

 

Step 10: To measure a new threshold, reset the threshold boundaries as below, and repeat the 

previous steps for a new threshold. 
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APPENDIX C: 3DF ZEPHYR AERIAL EDUCATIONAL 3.301 MODELLING METHODS 
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Step 1: Open Zephyr 3DF Software, click WorkFlow and select New Project. 

 

 

 

Step 2: Click Next, then select the ‘+’ symbol to add new photos. 
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Step 3: Select images extracted from the 4K video to create the 3D model. 

 

 

 

Step 4: Once uploaded, select next. The Camera Orientation screen will appear. Ensure the pre-

sets selected are ‘Aerial’ and ‘Default’. 
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Step 5: Click next; the images are ready to be processed by selecting ‘Run’. 

 

 

 

Step 6: The images are then extracted and uploaded onto the software. 
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Step 7: Once the images are uploaded, click Finish and the reconstruction phase is complete as 

below. This is known as the ‘Sparse Point Cloud’. 

 

 

 

Step 8: Make a ‘Dense Point Cloud’ as shown below. 
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Step 9: Ensure pre-sets are set to ‘Aerial’ and ‘Default’. 

 

 

 

Step 10: Select ‘Run’ as previously then the software will begin processing the ‘Dense Point 

Cloud’. 
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Step 11: Click ‘Finish’ and the ‘Dense Point Cloud’ will appear. 

 

 

 

Step 12: Create a ‘Triangulated Mesh’ using the feature below. 
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Step 13: Select the appropriate dense point cloud, in this case ‘Dense Point Cloud 1’. 

 

 

 

Step 14: Ensure the ‘Aerial’ and ‘Default – Sharp Edges’ pre-sets are selected and click next. 
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Step 15: Select ‘Run’ to process the image. 

 

 

 

Step 16: Once finished, a triangulated mesh will appear as below. 
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Step 17: The image is still in 2D format, and will require the development of a Textured Mesh to 

create 3D. This is done by clicking the ‘Create Textured Mesh’ symbol as below. 

 

 

 

Step 18: The software will then ask which mesh and cameras should be used to create the 

textured mesh. In this case, the mesh is ‘Mesh 1’ and ‘All cameras’ are selected. 
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Step 19: Select ‘next’ and a ‘settings’ window will appear. Ensure ‘Advanced’ settings are 

selected and click next. 

 

 

Step 20: The wizard will then show a summary of details that will be used to create the textured 

mesh. Check these are correct and click ‘Run’. 
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Step 21: Once finished the textured mesh will look similar to the triangulated mesh as before.  

 

 

Step 22: However, by clicking ‘Scene’, ‘Camera’ then ‘Enable Pivot Camera Style’ you can 

navigate the 3D model and see the various textures created. 

 

Once the model has been created it can then be used to make calculations.  
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Step 23: The area of the model that needs to be calculated is selected using the poly line tool. 

Select the area within the triangulated mesh layer as opposed to the textured mesh layer as the 

triangulated mesh is the layer used to make calculations. 

 

 

 

Step 24: The selected area can then be separated from the rest of the image into an individual 

layer using the ‘new object via cut’ tool. 
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Step 25: This will create a new layer in the side panel which is more appropriate for calculating 

measurements. 

 

 

 

Step 26: Select control points on the map to allow for accurate calculation to be made. The 

easiest way to do this is by selecting ‘pick’ in the ‘add control point’ tool panel. 
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Step 27: A more accurate way is to select control points from the images. 

 

 

Step 28: This will allow you to select the same point on a number of images as shown below and 

will create the control point for the model. 
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Step 29: Repeat the steps to create a number of control points as below. 

 

 

Step 30: The model can now be scaled. Select ‘Measures’ then ‘Distance’. This will allow for the 

selection of control points to measure between. 
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Step 31:  The distance line will appear and an inaccurate distance will be displayed in the side 

panel as below. 

 

 

Step 32: Using ‘Scale model with control distances’ enter the correct known distance between 

the control points. 
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Step 33: Calculate area and volume using the tools in the side bar. 
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APPENDIX D: STONEYFORD TEST RIG DATA TABLES 
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Biological Oxygen Demand (BOD) 

Date Inlet Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 WOC 
26-Jan-16 104 35 4.1 2.24 0.92 9.04 15 
04-Feb-16 86.4 11.2 3.1 2.68 2.12 0.96 15 
09-Feb-16 88.8 8 1.44 1.96 1.68 1.36 15 
18-Feb-16 158.2 14.4 3.28 4.11 3.96 3.88 15 
23-Feb-16 72.8 8.9 3.36 2.24 2.58 1.41 15 
03-Mar-16 41 9.9 1.8 1.88 0.96 0.6 15 
08-Mar-16 121 3.7 2.16 1.41 1.62 1.08 15 
16-Mar-16 127 76 0.7 2.8 0.84 3.96 15 
24-Mar-16 137.2 194 4.4 9.2 0.95 2.3 15 
31-Mar-16 150 76.6 1.7 2.94 1.98 2.05 15 
05-Apr-16 44 16.8 2.1 1 0.96 1.62 15 
12-Apr-16 62 126 3.2 2.9 1.35 2.28 15 
19-Apr-16 344 64 1.2 2.3 0.78 2 15 
28-Apr-16 352 55.3 5.5 8.94 3.36 2.88 15 
05-May-16 273 48.4 2 2.24 3.56 1.96 15 
10-May-16 224 33.4 5.94 3.18 3.32 3.72 15 
19-May-16 131.6 27.6 10.6 6 4.4 3.08 15 
24-May-16 201 18 12.3 9.5 2.9 2.8 15 
02-Jun-16 145.6 23.4 12.1 6.2 5.32 4.34 15 
07-Jun-16 191.8 48 20.3 28.8 8.5 13.6 15 
16-Jun-16 130 43.5 36 8.2 2.32 5 15 
21-Jun-16 189.6 13 6 6.6 3.5 2.92 15 
30-Jun-16 208.6 60 9 12.7 2.28 2.96 15 
05-Jul-16 35.2 24.4 5.88 4.9 3.3 2.1 15 
26-Jul-16 114.1 4.8 4.8 18.4 5 3.44 15 
04-Aug-16 141 18.4 10.5 32 9.24 3.4 15 
09-Aug-16 189 12.4 10.3 7.8 7.4 4 15 
18-Aug-16 175 14.6 11.1 14.8 11.4 3.09 15 
23-Aug-16 189 16 7.8 26 14.28 7 15 
01-Sep-16 147 7.7 8.4 13.6 5.04 2.76 15 
06-Sep-16 108 63 31 58.4 43 11.4 15 
15-Sep-16 222.6 152.6 33.6 38.4 13 11.3 15 
22-Sep-16 159.2 27.3 3.4 7.6 6.6 1.4 15 
29-Sep-16 175 4.9 <0.29 4 2 1.84 15 
12-Oct-16 189 19.1 4.96 6 5.2 2.32 15 
26-Oct-16 128.8 20.86 2.16 1.85 0.63 2.35 15 
02-Nov-16 170.8 14.4 12.2 1.8 6.6 1.2 15 
10-Nov-16 88.2 46    1.2 15 
17-Nov-16 106.4 11.2 6 1.7 10.5 3.28 15 
24-Nov-16 54 33.4 8.4 1.7 9 40 15 
01-Dec-16 138.6 47.2 7.7 2.6 4.4 2.28 15 
08-Dec-16 148 34.5 4.1 3.92 2.87 3.22 15 
15-Dec-16 163.8 16.4 10.8 7.6 8.7 4.2 15 
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05-Jan-17 153 15.36 7.4 4.55 24.4 2.84 15 
12-Jan-17 132 11.2 3.5 2.2 7.5 3.32 15 
19-Jan-17 140 12.3 2.3 2.4 1 0.3 15 
26-Jan-17 170.4 6.16 6.36 2.85 2.12 1.32 15 
02-Feb-17 128.8 8.4 4.2 5.04 2.94 2.2 15 
09-Feb-17 138.6 13.9 4.32 5.25 1.32 0.72 15 
16-Feb-17 137.9 105 1.5 2.24 1.96 1.33 15 
23-Feb-17 132 16.6 3.4 7.28 2.84 12.36 15 
02-Mar-17 100.8 11.48 3.78 2.32 2.22 1.3 15 
09-Mar-17 81.2 7 6.16 1.12 2.08 2.46 15 
16-Mar-17 107 4.2 1.76 0.96 0.9 0.3 15 
23-Mar-17 55.3 10 3.01 1.41 0.87 0.9 15 
30-Mar-17 149 7.2 3 4.13 1.61 1.82 15 
06-Apr-17 210 8.54 6.44 3 2.5 0.66 15 
13-Apr-17 208.6 19.04 7.56 4.48 5.04 9.38 15 
20-Apr-17 210 259 30.4 3.6 3.22 1.54 15 
27-Apr-17 211 77 3.68 3.6 4.69 2.52 15 
04-May-17 132 68.8 6.1 2.52 7.44 5.1 15 
18-May-17 151 29 4.55 2.1 1.75 2 15 
25-May-17 212 51.8 10.36 2.56 3.2 2.3 15 
01-Jun-17 438 146 79.2 14.4 10.3 11.4 15 
08-Jun-17 352 6.5 4.6 3.8 2.3 2.4 15 
15-Jun-17 196 5.7 5.32 5.4 2.59 2.88 15 
22-Jun-17 183.4 7.56 7.1 5.32 9.38 3.92 15 
29-Jun-17 159.6 8.2 5.4 4.2 4.3 3.64 15 
06-Jul-17 83 5.95 5.32 4.41 3.43 3.96 15 
11-Jul-17 193.2 51.2 56.6 28.9 3.71 10.08 15 
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Suspended Solids (SS) 

Date Inlet Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 WOC 
26-Jan-16 41 4 10 1.4 5 4 25 
04-Feb-16 70 1.4 6 3 3 5 25 
09-Feb-16 64 1.4 3 3 1.4 5 25 
18-Feb-16 19 1.4 3 3 3 3 25 
23-Feb-16 30 5 1.4 1.4 1.4 3 25 
03-Mar-16 46 4 1.4 1.4 1.4 1.4 25 
08-Mar-16 48 1.4 1.4 1.4 1.4 5 25 
16-Mar-16 47 350 204 152 26 6 25 
24-Mar-16 55 1830 254 446 23 10 25 
31-Mar-16 41 99 156 29 15 11 25 
05-Apr-16 41 19 205 21 8 11 25 
12-Apr-16 50 1340 167 74 3 5 25 
19-Apr-16 440 340 40 104 13 7 25 
28-Apr-16 470 22 10 8 4 1.4 25 
05-May-16 230 93 7 6 11 7 25 
10-May-16 248 62 16 11 15 15 25 
19-May-16 182 38 12 4 9 1.4 25 
24-May-16 151 51 29 150 10 8 25 
02-Jun-16 174 99 17 350 31 21 25 
07-Jun-16 106 336 30 70 32 34 25 
16-Jun-16 111 176 25 176 13 11 25 
21-Jun-16 174 130 24 25 14 9 25 
30-Jun-16 172 896 16 40 1.4 4 25 
05-Jul-16 28 52 16 52 20 8 25 
26-Jul-16 71 29 38 290 23 20 25 
04-Aug-16 210 200 80 344 11 18 25 
09-Aug-16 197 48 43 29 33 56 25 
18-Aug-16 46 100 60 42 56 18 25 
23-Aug-16 56 76 16 96 58 14 25 
01-Sep-16 105 92 32 45 31 11 25 
06-Sep-16 26 144 16 88 26 14 25 
15-Sep-16 120 624 23 30 35 25 25 
22-Sep-16 148 160 32 40 20 16 25 
29-Sep-16 124 132 42 4 68 4 25 
12-Oct-16 26 44 24 <2.8 24 6 25 
26-Oct-16 50 248 128 12 16 12 25 
02-Nov-16 124 554 38 10 22 7 25 
10-Nov-16 50 430       1.4 25 
17-Nov-16 34 42 20 4 44   25 
24-Nov-16 74 311 59 5 17 148 25 
01-Dec-16 46 248 4 8 <2.8 6 25 
08-Dec-16 74 184 14 4 20 1.4 25 
15-Dec-16 72 36 22 6 18 4 25 
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05-Jan-17 70 40 18 8 30 24 25 
12-Jan-17 42 12 38 22 24 24 25 
19-Jan-17 58 24 12 10 20 8 25 
26-Jan-17 212 23 18 12 <2.8 7 25 
02-Feb-17 98 24 6 12 16 8 25 
09-Feb-17 56 20 19 16 4 4 25 
16-Feb-17 52 76 20 24 12 9 25 
23-Feb-17 48 26 184 10 18 10 25 
02-Mar-17 58 41 7 5 5 8 25 
09-Mar-17 59 85 9 4 <2.8 3 25 
16-Mar-17 90 42 18 <2.8 18 8 25 
23-Mar-17 76 54 6 4 <2.8 <2.8 25 
30-Mar-17 109 39 19 22 12 15 25 
06-Apr-17 232 44 129 26 <2.8 18 25 
13-Apr-17 324 46 42 6 4 5 25 
20-Apr-17 332 9020 430 20 12 5 25 
27-Apr-17 144 236 23 16 3 4 25 
04-May-17 100 736 70 26 14 7 25 
18-May-17 113 108 24 8 12 4 25 
25-May-17 55 800 70 20 8 11 25 
01-Jun-17 78 11560 246 176 41 25 25 
08-Jun-17 110 58 12 266 4 9 25 
15-Jun-17 230 42 26 94 4 9 25 
22-Jun-17 174 6 30 304 48 18 25 
29-Jun-17 152 20 26 66 50 20 25 
06-Jul-17 64 30 10 35 16 16 25 
11-Jul-17 80 846.7 3790 124 32 180 25 
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Ammonia (NH3-N) 

Date Inlet Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 WOC 
26-Jan-16 15.02 16.25 9.65 0.84 0.12 0.12 3 
04-Feb-16 7.56 11.33 10.87 4.61 2.59 1.4 3 
09-Feb-16 16.33 13.26 9.96 3.39 1.88 1.33 3 
18-Feb-16 6.7 17.71 9.8 2.56 0.12 0.14 3 
23-Feb-16 12 13.28 10.04 3.58 0.96 0.47 3 
03-Mar-16 9.07 16.87 8.52 1.82 0.08 0.08 3 
08-Mar-16 23.15 8.76 8.38 2.57 1.37 1 3 
16-Mar-16 20.92 17.01 7.57 0.08 0.04 0.08 3 
24-Mar-16 24.6 21.24 6.86 0.31 0.015 0.07 3 
31-Mar-16 21.17 22.98 9.72 0.07 0.09 0.14 3 
05-Apr-16 16.72 18.98 12.96 2.4 0.12 0.12 3 
12-Apr-16 24.62 14.51 2.32 0.015 0.015 0.05 3 
19-Apr-16 32.8 15.54 0.17 0.04 0.015 0.07 3 
28-Apr-16 38.2 25.67 0.11 0.05 0.07 0.14 3 
05-May-16 35.71 25.15 0.1 0.05 0.015 0.06 3 
10-May-16 38.77 24.12 1.87 0.015 0.07 0.08 3 
19-May-16 19.94 18.67 4.66 0.015 0.06 0.04 3 
24-May-16 32.51 15.21 4.79 0.19 0.09 0.08 3 
02-Jun-16 32.15 22.53 0.67 0.1 0.12 0.11 3 
07-Jun-16 27.15 24.31 0.29 0.08 0.15 0.015 3 
16-Jun-16 42.32 23.15 0.39 0.31 0.05 0.015 3 
21-Jun-16 39.09 19.81 14.94 4.81 0.07 0.015 3 
30-Jun-16 36.02 26.57 12.07 1.76 0.07 0.05 3 
05-Jul-16 9.75 21.12 13.31 7.6 0.57 0.015 3 
26-Jul-16 32.37 21.43 10.27 2.5 1.69 0.37 3 
04-Aug-16 37.54 18.85 12.36 7.91 5.68 3.33 3 
09-Aug-16 38.33 20.87 13.68 5.34 1.24 0.6 3 
18-Aug-16 48.63 25.28 12.59 12.03 2.22 0.32 3 
23-Aug-16 17.82 25.61 14.84 13.79 5.65 1.29 3 
01-Sep-16 39.66 23.38 9.03 12.77 3.25 0.88 3 
06-Sep-16 15.67 19.78 21.86 14.77 7.15 1.72 3 
15-Sep-16 19.02 17.47 12.02 14.81 7.58 3.89 3 
12-Oct-16 40.89 32.12 22.01 13.22 6.54 2.03 3 
26-Oct-16 48.36 24.06 17.88 14.63 10.14 6.73 3 
02-Nov-16 47.76 23.11 13.54 14.86 10.46 3.73 3 
10-Nov-16 16.59 12.05 

   
3.73 3 

17-Nov-16 22.01 15.31 14.61 12.59 5.09 7.56 3 
24-Nov-16 22.53 19.99 19.05 12.72 14.23 10.5 3 
01-Dec-16 26.64 24.82 23.58 10.95 17.1 11.91 3 
08-Dec-16 31.46 24.1 26.53 15.85 17.95 13.07 3 
15-Dec-16 28.35 23.69 26.66 18.72 17.84 13.8 3 
05-Jan-17 35.57 4.77 23.62 17.56 16.65 12.84 3 
12-Jan-17 26.11 15.2 18.89 17.88 16.88 12.82 3 
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19-Jan-17 29.4 12.57 21.39 17.93 16.01 12.68 3 
26-Jan-17 28.32 11.95 23.86 19.68 16.62 10.99 3 
02-Feb-17 20.99 10.98 16.55 18.76 15.63 10.94 3 
09-Feb-17 21.87 13.55 14.72 13.91 11.82 9 3 
16-Feb-17 27.18 36.63 14.44 12.6 10.25 6.31 3 
23-Feb-17 32.72 21.82 19.57 12.4 9.82 3.61 3 
02-Mar-17 21.03 18.15 16.18 10.44 8.44 5.52 3 
09-Mar-17 20.29 12.76 13.36 8.75 7.18 3.34 3 
16-Mar-17 19.98 9.47 15.1 3.88 1.73 <0.03 3 
23-Mar-17 18.02 12.68 13.36 2.15 0.83 0.06 3 
30-Mar-17 19.49 10.79 13.35 1.32 0.15 <0.03 3 
06-Apr-17 21.89 8.74 17.09 0.17 0.08 <0.03 3 
13-Apr-17 25.96 10.86 18.58 0.93 0.39 0.13 3 
20-Apr-17 31.51 12.04 21.73 4.27 0.14 <0.03 3 
27-Apr-17 35.42 22.52 24.33 0.98 0.23 0.1 3 
04-May-17 28.27 32.16 23.28 1.38 0.16 0.09 3 
18-May-17 33.74 14.16 22.79 8.12 2.65 0.05 3 
25-May-17 32.65 28.94 20.94 7.63 0.18 0.05 3 
01-Jun-17 41.97 26.62 28.56 4.46 1.33 0.17 3 
08-Jun-17 29.54 3.06 19.14 4.18 2.49 0.62 3 
15-Jun-17 32.97 4.86 15.93 5.55 2.63 0.26 3 
22-Jun-17 35.97 5.08 21.74 8.69 0.55 0.13 3 
29-Jun-17 31.91 2.57 21.74 16.82 1.55 0.07 3 
06-Jul-17 31.93 4.56 16.91 13.81 7.12 7.09 3 
11-Jul-17 31.16 13.36 19.27 11.16 7.83 2.07 3 
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Chemical Oxygen Demand (COD) 

Date Inlet Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 
26-Jan-16 166 56 35.6 24.8 23.6 28.4 
04-Feb-16 256 27.5 17.9 17.4 15.9 22 
09-Feb-16 220 27.4 20.7 20.7 19.8 19.2 
18-Feb-16 63.3 40.3 14.4 23.8 14.3 16.3 
23-Feb-16 120 48.4 24 25 23.9 22.3 
03-Mar-16 144 54.6 25.2 25.3 25.2 25.5 
08-Mar-16 268 23.6 15.2 13.5 25.4 4.75 
16-Mar-16 211 181 63 52.1 17.4 20.3 
24-Mar-16 259 432 63.7 102 26.1 30.3 
31-Mar-16 219 174 54.8 27.3 38 30.7 
05-Apr-16 92.5 73.7 49 39.3 38.6 39 
12-Apr-16 267 230 39.3 31.5 17.1 24.2 
19-Apr-16 762 107 25.3 26.5 22 33.1 
28-Apr-16 247 134 33.8 40.7 28.7 38.2 
05-May-16 580 134 30.7 23.8 36.4 35.5 
10-May-16 530 130 49 39.7 44.1 48 
19-May-16 314.8 157 72.2 61.3 58.4 64.5 
24-May-16 442 143 73.2 77.9 57.4 50.9 
02-Jun-16 385 170 76.1 92 51.7 59.6 
07-Jun-16 329 293 112 98.7 69.9 112 
16-Jun-16 323 241 202 173 78.2 75.5 
21-Jun-16 483 224 85.4 96.4 80.6 82.2 
30-Jun-16 470 350 96.8 102 85.2 71.7 
05-Jul-16 127 241.2 96.3 134 92.7 97.5 
26-Jul-16 324 98.2 117 301 131 139 
04-Aug-16 351 115 108 572 114 105 
09-Aug-16 540 92 101 103 129 125 
18-Aug-16 505 104 109 137 147 102 
23-Aug-16 322 74.8 88.8 130 156 153 
01-Sep-16 335 113 103 137 124 90.2 
06-Sep-16 146 111 66.4 94.6 111 128 
15-Sep-16 275 314 103 97.6 115 118 
22-Sep-16 430 124 71.2 96.8 111 83.7 
29-Sep-16 430 97.8 51.6 84.7 97.5 63.9 
12-Oct-16 280 88.2 71.4 67.4 68.1 52.5 
26-Oct-16 318 221 39.9 58.9 57.4 53.8 
02-Nov-16 314 242.4 82.6 50.3 65.5 45.5 
10-Nov-16 174 291 

   
50.7 

24-Nov-16 236 287 88.1 70.9 67.9 287 
01-Dec-16 315 311.2 48.8 48.9 85.7 51 
08-Dec-16 333 361 60.5 44.7 61.7 60.6 
15-Dec-16 263 61.6 60.4 53.6 62.9 59.5 
05-Jan-17 295 54.9 52.4 55.1 84.1 50.6 
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12-Jan-17 289 66.2 55.7 48 54.9 53.6 
19-Jan-17 299 51 41 38 33.5 34.1 
26-Jan-17 909 47.8 42.8 48.6 37.1 30.8 
02-Feb-17 277 48.3 38.4 44.3 35 42.7 
09-Feb-17 245 57 37.8 30.8 28.9 32.2 
16-Feb-17 237 221 28.1 30.2 28 24.3 
23-Feb-17 301 66 40.2 33.2 28 35.4 
02-Mar-17 207 68.4 43.5 38.4 37.1 36.6 
09-Mar-17 172 77.5 36.7 34.3 34.3 26.7 
16-Mar-17 249 62.8 35.8 28.7 41 37.3 
23-Mar-17 161 69.6 36.6 36.1 31.8 23.9 
30-Mar-17 270 37.2 28.3 22.9 15.4 10.3 
06-Apr-17 511 63.9 80.3 55.4 34.2 24.4 
13-Apr-17 434 103 71.2 56.7 56.3 45.7 
20-Apr-17 595 

 
209 40.3 31.5 25.6 

27-Apr-17 492 604 39.7 47.6 86 24.3 
04-May-17 286 397 52.1 49.4 40.9 40.5 
18-May-17 352 295 61.8 55 61.6 57.5 
25-May-17 363 187 68.2 58.3 65.3 56.3 
01-Jun-17 464 484 142 112 59.2 65.1 
08-Jun-17 302 57.8 73.3 88 71.4 61.3 
15-Jun-17 462 45.4 58.1 82 58.1 51.1 
22-Jun-17 348 28.4 74.4 88.4 38.8 58.7 
29-Jun-17 324 63.2 88.8 93.6 71.6 80 
06-Jul-17 228 428 66.8 92.4 74.8 108.4 
11-Jul-17 424 350 54.8 79.2 76.8 147.2 
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APPENDIX E: AVERAGE WEEKLY WEATHER DATA CORRESPONDING TO SAMPLE 

DATES 
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Week 
Ending 

Week 
Number 

Total 
Precipitation 
(mm) 

Average 
Wind 
Speed 
(m/s) 

Average 
Humidity 
(%) 

Average 
Temperature 
(°C) 

26-Jan-16 1 38.6 3.8 92.7 3.4 
04-Feb-16 2 14 5.9 86.7 8.5 
09-Feb-16 3 45.8 7.6 86.1 6.3 
18-Feb-16 4 27.4 6.6 87.1 5.7 
23-Feb-16 5 18.4 3.9 84.7 3.3 
03-Mar-16 6 46.4 5.0 89.0 4.3 
08-Mar-16 7 11.4 3.3 81.8 2.9 
16-Mar-16 8 33 4.5 85.5 4.2 
24-Mar-16 9 16 4.1 80.3 7.9 
31-Mar-16 10 0.4 2.8 83.6 6.6 
05-Apr-16 11 27 5.0 80.9 7.1 
12-Apr-16 12 36.2 4.2 87.2 6.4 
19-Apr-16 13 32.2 5.1 83.1 6.1 
28-Apr-16 14 11.6 3.6 82.9 6.6 
05-May-16 15 0.2 3.6 72.4 7.7 
10-May-16 16 20 5.2 77.3 6.5 
19-May-16 17 2.8 5.0 75.3 11.3 
24-May-16 18 0.4 4.1 70.8 11.5 
02-Jun-16 19 51.6 3.7 83.8 11.0 
07-Jun-16 20 1 3.0 79.5 11.8 
16-Jun-16 21 0 3.2 74.0 15.5 
21-Jun-16 22 59.6 2.7 87.0 16.1 
30-Jun-16 23 12.8 3.7 82.8 13.5 
05-Jul-16 24 18 3.8 81.2 13.9 
26-Jul-16 27 28.2 3.7 79.3 15.4 
04-Aug-16 28 22.2 3.4 80.9 17.2 
09-Aug-16 29 45.4 2.7 83.2 14.2 
18-Aug-16 30 7.2 5.0 80.6 15.5 
23-Aug-16 31 8.6 4.7 82.7 14.9 
30-Aug-16 32 23 4.5 82.9 16.6 
01-Sep-16 33 20 2.8 82.5 14.7 
06-Sep-16 34 26.6 4.4 83.6 15.5 
15-Sep-16 35 39.2 5.5 84.5 16.1 
22-Sep-16 36 8.2 2.9 84.8 14.2 
29-Sep-16 38 3 4.8 83.9 12.1 
12-Oct-16 40 47.6 4.5 85.4 10.5 
26-Oct-16 42 0.8 3.1 90.0 10.8 
02-Nov-16 43 10.6 3.1 84.0 6.1 
10-Nov-16 44 61.8 3.9 91.6 7.9 
17-Nov-16 45 15.2 4.4 91.2 3.9 
24-Nov-16 46 1.8 2.3 87.6 3.5 
01-Dec-16 47 1 2.6 87.4 5.8 
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08-Dec-16 48 2.2 4.8 91.7 9.7 
15-Dec-16 49 28.2 3.9 91.8 4.2 
05-Jan-17 53 11.4 5.0 87.0 5.7 
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APPENDIX F: STONEYFORD TEST RIG DATA TABLES 
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Biological Oxygen Demand (BOD) 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 WOC 
09-Aug-16 189 180.6 149 279 136 142 131.6 173.6 352 15 
18-Aug-16 175 446.6 183.5 189.5 119 116.2 127.4 152.6 184.8 15 
23-Aug-16 189 130.2 216 128 170 142 150 158 142 15 
01-Sep-16 147 308 176 176 124.6 121.8 120 144 226 15 
06-Sep-16 108 110 139 100 188 154 145.6 144 124 15 
15-Sep-16 222.6 136 197 128.4 135.6 189 142.8 274 217 15 
22-Sep-16 159.2 72 89.6 62 77 72 99 95.2 76.3 15 
29-Sep-16 175 109 84 102.9 121.8 124.6 133 136 121 15 
06-Oct-16 

 
24.4 4.4 5.8 5.53 2.17 

  
165.6 15 

12-Oct-16 189 101.2 140.5 101 128.5 106 150 183.5 172 15 
19-Oct-16 114.8 70.7 77 77 71.4 56 77 72.8 114 15 
26-Oct-16 128.8 70 65 68 74 96.8 103 120 110 15 
02-Nov-16 170.8 111 119 105 118 127 151 161 145 15 
10-Nov-16 88.2 50 62 39.9 62 73 63 68 109.9 15 
17-Nov-16 106.4 99.4 88 84 102 105.6 90.4 114 8.32 15 
24-Nov-16 54 114.8 115 116.2 141.4 156 172 182 154 15 

01-Dec-16 138.6 102.4 118.4 116.9 111.3 122.5 126.7 158.2 123.2 15 
08-Dec-16 148 106.5 126 123.2 113.4 109.2 127.4 116.9 143 15 

15-Dec-16 163.8 94.5 106.4 103.6 106.4 94.5 95.2 98 119.2 15 
05-Jan-17 153 117 141.5 127 111.5 110.5 116 133.5 148.4 15 
12-Jan-17 132 92.4 97.3 96.6 111.3 121.1 117.6 121.8 105 15 
19-Jan-17 140 88 101 101 103 108 108 100 117 15 
26-Jan-17 170.4 141.4 211.4 154 146 153 153 142 164 15 
02-Feb-17 128.8 54.4 55.3 77 63.7 93.8 90.3 85 87.5 15 
09-Feb-17 138.6 82.4 79 72 113 112 74.2 125.3 194 15 
16-Feb-17 137.9 31.5 96.6 96.8 88.8 130 109.2 109.9 135.1 15 
23-Feb-17 132 98 91 96 85 117 106 119 135 15 
02-Mar-17 100.8 75.6 90 83 74 42 87 67.9 112 15 
09-Mar-17 81.2 60 64 54 97 61 59.5 50.4 74.9 15 
16-Mar-17 107 96 76 80 80 96 87 140 148 15 
23-Mar-17 55.3 40.2 35 21.7 23.8 12.6 26.6 22.2 50.4 15 
30-Mar-17 149 150 124 116 142 148 225 163.8 115 15 
06-Apr-17 210 79.8 93.8 88.2 99.4 95.2 115 138.6 100.8 15 
13-Apr-17 208.6 116.2 123.2 158.2 168 165.2 162.4 186.2 125 15 
20-Apr-17 210 105 121.8 118 180.6 147 148.4 173 179.2 15 
27-Apr-17 211 104 129 98 130 146 142 146 114 15 
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Suspended Solids (SS) 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 WOC 
09-Aug-16 197 59 55 1450 82 49 79 73 792 25 
18-Aug-16 46 2824 63 59 58 50 54 52 50 25 
23-Aug-16 90 36 25 26 36 35 39 19 20 25 
01-Sep-16 105 3196 54 44 36 33 38 36 226 25 
06-Sep-16 26 20 17 21 24 40 20 16 15 25 
15-Sep-16 120 23 27 23 32 32 32 30 20 25 
22-Sep-16 148 22 36 12 30 40 40 44 29 25 
29-Sep-16 124 21 20 21 22 46 30 37 26 25 
06-Oct-16 

 
140 56 6 32 4 

  
26 25 

12-Oct-16 26 16 20 24 16 10 40 38 24 25 
19-Oct-16 48 4 4 5 11 10 8 19 24 25 
26-Oct-16 50 18 10 14 10 30 24 38 36 25 
02-Nov-16 124 24 12 28 16 22 20 22 36 25 
10-Nov-16 50 8 5 11 15 12 4 8 132 25 
17-Nov-16 34 6 17 18 24 16 30 34 985 25 
24-Nov-16 74 30 35 35 51 68 61 83 368 25 
01-Dec-16 46 12 16 24 24 18 22 46 42 25 

08-Dec-16 74 26 36 34 38 36 38 46 50 25 

15-Dec-16 72 24 28 16 36 32 26 28 42 25 

05-Jan-17 70 16 20 32 32 36 38 54 67 25 
12-Jan-17 42 26 28 40 48 38 40 54 26 25 
19-Jan-17 58 66 30 40 22 36 40 32 92 25 
26-Jan-17 212 46 14 22 32 30 36 46 76 25 
02-Feb-17 98 108 26 32 30 36 26 40 186 25 
09-Feb-17 56 38 12 22 14 34 14 38 500 25 
16-Feb-17 52 40 24 18 18 22 20 34 73 25 
23-Feb-17 48 120 8 22 18 36 18 34 50 25 
02-Mar-17 58 26 27 26 24 12 26 23 41 25 
09-Mar-17 59 24 12 8 14 17 16 12 20 25 
16-Mar-17 90 84 18 32 26 34 46 42 66 25 
23-Mar-17 76 42 24 18 8 16 24 6 52 25 
30-Mar-17 109 69 12 17 34 40 25 48 20 25 
06-Apr-17 232 32 14 21 28 31 26 44 39 25 
13-Apr-17 324 110 26 22 24 23 37 46 42 25 
20-Apr-17 332 152 36 34 38 42 54 46 118 25 
27-Apr-17 144 52 30 12 40 42 36 62 39 25 
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Ammonia (NH3-N) 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 WOC 
09-Aug-16 38.33 35.67 34.08 33.42 35.13 35.84 35.49 36.01 35.44 3 
18-Aug-16 48.63 37.51 37.61 37.91 36.55 36.08 36.6 37.49 38.82 3 
23-Aug-16 17.82 24.91 23.83 22.63 25.05 24.47 24.97 24.87 20.01 3 
01-Sep-16 39.66 37.35 37.12 36.54 35.77 37.87 36.55 38.65 37.99 3 
06-Sep-16 15.67 17.43 18.73 16.61 19.85 19.42 19.79 19.72 16.52 3 
15-Sep-16 19.02 22.96 24.95 21.82 24.21 23.92 24.31 24.67 21.67 3 
06-Oct-16 

 
26.62 18.39 12.3 6.38 2.7 42.8 40.95 36.42 3 

12-Oct-16 40.89 37.8 38.27 36.67 41.76 41.31 42.8 40.95 39.52 3 
19-Oct-16 26.45 25.69 25.75 26.18 16.02 12.94 16.14 14.76 26.92 3 
26-Oct-16 48.36 35.06 33.75 32.83 37.03 35.02 37.21 35.04 44.53 3 
02-Nov-16 47.76 38.46 36.36 35.12 40.93 38.31 40.9 37.7 46.17 3 
10-Nov-16 16.59 14.76 12.38 13.13 16.12 16.83 16.25 17.2 15.05 3 
17-Nov-16 22.01 21.95 21.16 21.02 26.5 25.71 26.03 25.57 22.52 3 
24-Nov-16 22.53 29.28 29.98 28.98 36.61 35.06 36.08 34.1 22.81 3 
01-Dec-16 26.64 32.79 35.78 33.92 36.11 36.45 37.38 37.18 26.45 3 
08-Dec-16 31.46 36.19 33.84 33.48 33.54 34.04 33.7 32.33 32.28 3 

15-Dec-16 28.35 26.36 25.43 25.73 30.06 26.12 28.33 27.18 21.83 3 
05-Jan-17 35.57 33.4 33.62 33.34 32.99 33.35 33.75 33.28 31.5 3 

12-Jan-17 26.11 26.66 26.94 26.82 28.43 28.13 28.27 27.28 23.26 3 
19-Jan-17 29.4 29.57 29.83 29.69 26.88 29.61 26.59 24.67 23.78 3 
26-Jan-17 28.32 34.45 35.2 35.29 33.24 35.62 33.04 29.31 28.49 3 
02-Feb-17 20.99 0.24 16.11 14.96 13.85 19.24 15.49 17.02 19.98 3 
09-Feb-17 21.87 21.67 19.66 18.78 21.03 23.68 18.34 23.19 25.55 3 
16-Feb-17 27.18 19.57 37.15 35.63 25.72 29.78 38.9 27 41.23 3 
23-Feb-17 32.72 38.12 38.44 37.68 26.34 30.52 41.64 27.14 44.54 3 
02-Mar-17 21.03 22.8 24.45 26.43 26.57 10.68 25.23 16.11 20.98 3 
09-Mar-17 20.29 17.12 18.03 18.89 22.69 17.42 17.11 10.58 13.9 3 
16-Mar-17 19.98 35.24 33.77 33.73 26.26 26.13 34.74 23.58 44.85 3 
23-Mar-17 18.02 17.87 17.51 17.55 15.44 6.82 18.44 12.53 17.47 3 
30-Mar-17 19.49 25.76 29.12 27.6 29.47 29.77 27.39 28.42 19.25 3 
06-Apr-17 21.89 26.32 27.08 28.74 30.45 30.38 31.13 29.7 20.39 3 
13-Apr-17 25.96 31.46 31.06 33.24 33.21 32.89 32.94 31.17 19.51 3 
20-Apr-17 31.51 37.71 37.21 37.51 37.08 36.81 37.05 34.81 32.02 3 
27-Apr-17 35.42 34.44 34.95 37.7 37 36.79 37.16 36.08 27.38 3 
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Chemical Oxygen Demand (COD) 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 
09-Aug-16 540 329 317 743 309 291 330 360 705 
18-Aug-16 

 
1460 339 342 251 263 285 303 377.6 

23-Aug-16 205 211 222 191 211 221 225 251 195 
01-Sep-16 335 2190 276 290 215 219 235 265 109 
06-Sep-16 146 37.6 136 158 129 183 187 178 148 
15-Sep-16 275 216 245 97.8 117 132 122 127 248 
22-Sep-16 430 173 197 167 243 223 247 247 187 
29-Sep-16 430 200 179 201 231 248 256 266 238 
06-Oct-16 

 
124 84.3 78.3 77.6 68.5 240 273 290 

12-Oct-16 280 205 224 197 205 197 240 273 253 
19-Oct-16 200 137 133 137 125 102 139 131 184 
26-Oct-16 318 193 213 200 236 256 259 296 273 
02-Nov-16 314 209 315 221 238 253 282 300 297 
10-Nov-16 174 87.8 91.1 81.6 150 117 154 144 132 
17-Nov-16 190 147 165 150 199 208 210 246 2924 
24-Nov-16 236 203 235 224 302 328 321 380 445 

01-Dec-16 315 227 261 246 276 297 282 350 255 
08-Dec-16 333 225 252 241 251 230 256 280 294 

15-Dec-16 263 181 196 186 212 197 213 235 222 
05-Jan-17 295 230 256 255 229 234 237 289 294 
12-Jan-17 289 203 227 227 259 256 263 293 227 
19-Jan-17 299 207 232 233 239 249 236 221 279 
26-Jan-17 909 220 347 295 674 308 294 796 423 
02-Feb-17 277 138 103 115 122 167 104 162 168 
09-Feb-17 245 144 132 132 176 224 132 248 596 
16-Feb-17 237 91.6 204 194 165 255 228 218 292 
23-Feb-17 301 224 198 202 174 239 239 237 37 
02-Mar-17 207 154 149 154 154 103 168 129 198 
09-Mar-17 172 125 124 123 137 117 125 96.2 148 
16-Mar-17 249 247 208 205 197 235 215 216 321 
23-Mar-17 161 95 79.8 83 74.3 47 83.4 58.9 136 
30-Mar-17 270 205 192 195 247 267 452 297 216 
06-Apr-17 511 177 180 194 229 253 272 297 222 
13-Apr-17 434 277 209 224 274 293 285 334 214 
20-Apr-17 595 294 252 256 290 330 346 368 397 
27-Apr-17 492 230 237 206 254 287 299 306 222 
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pH 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 
09-Aug-16 8.2 7.3 7.3 7.4 7.4 7.4 7.4 7.3 7.1 
18-Aug-16 

 
7.2 7.2 7.3 7.3 7.3 7.2 7.2 7.1 

23-Aug-16 7 7.2 7.1 7.3 7.2 7.2 7.2 7.2 7.1 
01-Sep-16 8.3 7.2 7.3 7.4 7.2 7.3 7.3 7.2 7.1 
06-Sep-16 7 7.3 7.2 7.4 7 7.2 7.1 7.1 7.2 
15-Sep-16 7.3 7.3 7.2 7.3 7.1 7.2 7.1 7.1 7.2 
22-Sep-16 7.8 7.4 7.2 7.4 7.2 7.3 7.3 7.2 7.3 
29-Sep-16 8 7.3 7.3 7.4 7.2 7.3 7.2 7.3 7.2 
06-Oct-16 

 
7.5 7.4 7 7.1 7.2 

  
7.22 

12-Oct-16 7 7.3 7.3 7.3 7.3 7.5 7.3 7.3 7.2 
01-Dec-16 7.1 7.2 7.1 7.2 7.2 7.2 7.2 7.2 7.2 
08-Dec-16 7.3 7.1 7.2 7.2 7.2 7.3 7.2 7.3 7.3 
15-Dec-16 7.5 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 
05-Jan-17 7.5 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 
12-Jan-17 7.3 7.3 7.3 7.3 7.2 7.3 7.3 7.3 7.3 
19-Jan-17 7.3 7.2 7.2 7.3 7.3 7.4 7.3 7.3 7.3 
26-Jan-17 7.3 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.3 
02-Feb-17 7.2 7.3 7.3 7.3 7.2 7.3 7.4 7.3 7.4 

 

 

NB: pH analysis was not carried out for a period of 6 weeks between October and December. 
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Nitrates 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 

09-Aug-16 0.49 0.47 0.48 0.52 0.48 0.48 0.48 0.49 0.51 
18-Aug-16 

 
0.17 0.16 0.16 0.16 0.15 0.14 0.14 0.17 

23-Aug-16 0.05 2.71 0.32 0.23 0.45 0.48 0.46 0.89 0.05 
01-Sep-16 0.05 0.16 0.15 0.15 0.15 0.16 0.15 0.15 0.16 
06-Sep-16 0.5 0.47 0.48 0.47 0.49 0.49 0.48 0.48 0.48 
15-Sep-16 1.13 0.42 0.42 0.41 0.41 0.42 0.42 0.43 0.42 
06-Oct-16 

 
0.29 0.31 0.31 0.33 0.4 0.3 

 
0.29 

12-Oct-16 0.31 0.3 0.29 0.29 0.29 0.29 0.49 0.29 0.47 
19-Oct-16 

 
0.39 0.39 0.39 0.38 0.39 0.39 0.4 0.38 

26-Oct-16 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
02-Nov-16 0.35 0.36 0.36 0.37 0.36 0.37 0.35 0.37 0.38 
10-Nov-16 1.19 2.45 0.88 0.2 0.22 0.22 0.23 0.24 0.24 
17-Nov-16 0.49 0.48 0.48 0.48 0.46 0.5 0.47 0.47 0.48 
24-Nov-16 0.42 0.41 0.42 0.42 0.37 0.41 0.42 0.42 0.42 
01-Dec-16 0.32 0.35 0.35 0.35 0.37 0.35 0.34 0.34 0.3 
08-Dec-16 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
15-Dec-16 1.26 0.49 0.34 0.33 0.34 0.34 0.34 0.32 0.31 

 

*Where a value of 0.05 is recorded, a lab analysis of <0.1 was determined and an average 

calculated 
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Nitrites 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 

09-Aug-16 0.06 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
18-Aug-16 

 
0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

23-Aug-16 0.005 0.03 0.005 0.005 0.005 0.005 0.01 0.01 0.005 
01-Sep-16 0.08 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
06-Sep-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
15-Sep-16 0.03 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
06-Oct-16 

 
0.005 0.005 0.005 0.005 0.03 

  
0.005 

12-Oct-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
19-Oct-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
26-Oct-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
02-Nov-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
10-Nov-16 0.06 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.02 
17-Nov-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
24-Nov-16 0.005 0.005 0.005 0.005 0.02 0.005 0.005 0.005 0.005 
01-Dec-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
08-Dec-16 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
15-Dec-16 0.03 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

 

*Where a value of 0.005 is recorded, a lab analysis of <0.01 was determined and an average 

calculated 
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Total Nitrogen 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 

09-Aug-16 0.55 0.45 0.46 0.5 0.46 0.46 0.45 0.46 0.47 

18-Aug-16 
 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

23-Aug-16 0.12 2.74 0.31 0.12 0.45 0.48 0.47 0.9 0.12 

01-Sep-16 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

06-Sep-16 0.47 0.45 0.46 0.45 0.47 0.47 0.46 0.45 0.46 

15-Sep-16 1.16 0.4 0.4 0.4 0.39 0.4 0.4 0.41 0.4 

06-Oct-16 
 

0.26 0.29 0.28 0.3 0.43 
  

0.26 

12-Oct-16 0.3 0.3 0.29 0.29 0.29 0.29 0.3 0.29 0.46 

19-Oct-16 0.39 0.37 0.37 0.37 0.36 0.37 0.36 0.38 0.36 

26-Oct-16 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

02-Nov-16 0.32 0.33 0.33 0.34 0.33 0.34 0.32 0.34 0.35 

10-Nov-16 1.25 2.44 0.87 0.12 0.12 0.12 0.12 0.12 0.26 

17-Nov-16 0.45 0.45 0.44 0.44 0.42 0.47 0.43 0.43 0.44 

24-Nov-16 0.4 0.39 0.4 0.4 0.39 0.39 0.4 0.39 0.4 

01-Dec-16 0.29 0.32 0.32 0.32 0.34 0.32 0.31 0.32 0.3 

08-Dec-16 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

15-Dec-16 1.29 0.48 0.33 0.32 0.32 0.33 0.32 0.31 0.31 

 

*Where a value of 0.12 is recorded, a lab analysis of <0.24 was determined and an average 

calculated 
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Phosphorus 

Date Inlet T1 T2 T3 T4 T5 T6 T7 H1 

09-Aug-16 4.9 4.97 4.96 4.94 4.98 4.99 4.95 5.04 4.68 
18-Aug-16 

 
5.33 4.88 5.2 4.98 4.91 4.86 4.92 5.07 

23-Aug-16 2.96 3.38 3.64 3.25 3.71 3.67 3.71 3.83 3.1 
01-Sep-16 5.4 5.62 4.99 5.14 4.74 5.01 4.94 4.67 5.18 
06-Sep-16 2.53 2.84 3.11 2.69 3.14 3.22 3.13 3.16 2.6 
15-Sep-16 3.54 3.85 4.06 3.64 3.71 3.76 3.77 3.79 3.53 
06-Oct-16 

 
3.61 2.16 1.91 1.15 0.71 

  
5.48 

12-Oct-16 5.68 5.5 5.6 4.97 5.84 5.76 5.99 5.69 5.09 
19-Oct-16 3.51 3.34 3.32 3.39 2.53 2.16 2.56 2.31 3.51 
26-Oct-16 6.34 5.05 4.92 4.93 4.77 4.98 4.74 5.08 6.13 
02-Nov-16 6.19 5.48 5.36 5.15 5.55 5.42 5.74 5.45 6.05 
10-Nov-16 2.55 2.1 1.94 1.9 2.46 2.57 2.55 2.66 2.08 
17-Nov-16 3.11 3.43 3.39 3.34 3.78 3.9 3.76 3.9 3.48 
24-Nov-16 3.92 4.77 4.76 4.78 4.33 4.76 4.46 5.32 3.72 
01-Dec-16 4.39 4.78 4.5 4.64 4.08 4.47 4.68 4.63 4.29 
08-Dec-16 4.69 4.94 4.49 4.65 4.42 4.78 4.76 4.77 4.79 
15-Dec-16 4.35 3.91 3.81 3.86 4.21 3.84 4.08 3.97 3.47 
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H1 Water Depth V Treatment 

Date Water 
Depth 

BOD SS NH3-N COD 

09-Aug-16 -200 352 792 35.44 705 
18-Aug-16 -200 184.8 50 38.82 377.6 
23-Aug-16 -200 142 20 20.01 195 
01-Sep-16 -200 226 226 37.99 109 
06-Sep-16 -100 124 15 16.52 148 
15-Sep-16 -100 217 20 21.67 248 
22-Sep-16 -100 76.3 29 

 
187 

29-Sep-16 -100 121 26 
 

238 
06-Oct-16 0 165.6 26 36.42 290 
12-Oct-16 0 172 24 39.52 253 
19-Oct-16 0 114 24 26.92 184 
26-Oct-16 0 110 36 44.53 273 
02-Nov-16 -200 145 36 46.17 297 
10-Nov-16 -200 109.9 132 15.05 132 
17-Nov-16 -200 8.32 985 22.52 2924 
24-Nov-16 -200 154 368 22.81 445 
01-Dec-16 -100 123.2 42 26.45 255 
08-Dec-16 -100 143 50 32.28 294 
15-Dec-16 -100 119.2 42 21.83 222 
05-Jan-17 0 148.4 67 31.5 294 
12-Jan-17 0 105 26 23.26 227 
19-Jan-17 0 117 92 23.78 279 
26-Jan-17 0 164 76 28.49 423 
02-Feb-17 -200 87.5 186 19.98 168 
09-Feb-17 -200 194 500 25.55 596 
16-Feb-17 -200 135.1 73 41.23 292 
23-Feb-17 -200 135 50 44.54 37 
02-Mar-17 -100 112 41 20.98 198 
09-Mar-17 -100 74.9 20 13.9 148 
16-Mar-17 -100 148 66 44.85 321 
23-Mar-17 -100 50.4 52 17.47 136 
30-Mar-17 0 115 20 19.25 216 
06-Apr-17 0 100.8 39 20.39 222 
13-Apr-17 0 125 42 19.51 214 
20-Apr-17 0 179.2 118 32.02 397 
27-Apr-17 0 114 39 27.38 222 

 

 


