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Abstract

Activity Monitoring is a key feature of health and well-being assessment that has

received immense consideration from the research community over the last few

decades. In recent years, smart phones with inbuilt sensors have become popular

for the purpose of activity recognition. The sensors capture a large amount of

data, which contain meaningful events, in a short period of time. Hence, the

capability to detect, adapt and respond to such changes performs a key role in

various domains such as to identify changes in patient vital signs in a medical

domain or to assist in the process of generating activity labels for the purposes

of annotating real-world datasets. The sudden change in mean, variance or both

may represent a change point in time series data. A change point can also be used

to identify the transition from one activity to another. Change point detection

is a technique to process and analyse the sensor data and identify the transition

from one underlying time series generation model to another.

In this thesis, the existing Multivariate Exponentially Weighted Moving Average

(MEWMA) algorithm has been used to automatically detect such change points

for transitions in user activity. The MEWMA approach has the advantage that

it does not require any assumptions to be made in relation to the underlying

distributions to evaluate multivariate data streams and can run in an online

scenario.

Following this, the genetic algorithm (GA) has been used to identify the optimal

set of parameters for a MEWMA approach to change point detection. The GA

optimizes different parameters of the MEWMA in an effort to find the maximum

F-measure, which subsequently identifies the exact location of the change point

xiv



from an existing activity to a new one. Furthermore, we benchmark our ap-

proach against a similar multivariate approach, namely Multivariate Cumulative

SUM (MCUSUM) to automatically detect change points in different user activ-

ities. In addition, GA and Particle Swarm Optimization (PSO) are also used to

automatically identify an optimal parameter set using different parameters for

MEWMA and MCUSUM, so as to maximize the objective function that is F-

measure. The evaluation is performed using different metric measures based on

real and synthetic datasets collected from accelerometer sensor.The experimental

results shows that the proposed approach MEWMA outperforms than the bench

mark approach MCUSUM.

Hence, the accurate change point detection in the data enable a system to iden-

tify changes in user activities and recognize and monitor good behaviour such as

healthy exercise patterns based on these activities.
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Chapter 1

Introduction

This chapter provides a synopsis of the thesis subject matter which characterizes

the need for change point detection in various applications and more specifi-

cally in health sensor data which is used for monitoring human activities. The

problem statement formulation and study rationale along with the summary of

objectives and methodologies are discussed. As a conclusion, a synopsis of the

key contribution and the thesis structure is described and illustrated.

1.1 Overview

Human activity recognition (HAR) has emerged as an active area of research over

the past few years. It is an important and challenging field which can support

numerous pervasive applications. These applications range from health care and

assisted living to industrial areas and surveillance. For example, the objective of

health care and assisted living is to perform activity monitoring and recognition

and facilitate independent living and support in place for patients. In industry,

activity aware applications facilitate workers to perform their tasks smoothly and

support them so as to avoid mistakes and preserve workplace safety. Activity

recognition technology in the deployment of surveillance and security helps to

capture and identify threats of terrorism (Chen et al., 2012).

Over the last decade, significant developments have been made in sensor tech-

nologies such as low power, low cost, high capacity, miniaturized sensors (Pan-

telopoulos and Bourbakis, 2010)(Alemdar and Ersoy, 2010) and data processing
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techniques. These areas have received immense consideration from researchers

following the development and advances in such supporting technologies, to move

from low level data collection and transmission towards high level context pro-

cessing, information integration and activity recognition. Meanwhile, a number

of real world problems and their solutions has become progressively reliant on

activity recognition.

Activity recognition is a complicated process to be categorized into four basic

tasks.

1. To choose and deploy appropriate sensors to objects and environments in

order to monitor and capture a user’s behaviour along with the state change

of the environment.

2. To collect, store and process perceived information through data analysis

techniques and/or knowledge representation at appropriate levels of ab-

straction.

3. To create computational activity models in a way that allows software

systems/agents to conduct reasoning and manipulation.

4. To select or develop reasoning algorithms to infer activities from sensor

data (Chen et al., 2012).

Hence, the aim of activity recognition research is to assist computers to have

similar skills to humans for recognizing people’s activities. The objective of

recognizing activities of daily living is to provide an activity recognition system

with sensing abilities.

1.2 The need of Change Detection

The implementation of activity monitoring is a key part of a context aware

system because it is critical for understanding human behaviour as well as human

centric applications. In recent years, numerous wearable sensor technologies

such as accelerometers, GPS, light sensors and gyroscope have been used to
2
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provide support in data collection providing low power communication and fast

processing (Cleland et al., 2014).

Activity monitoring empowers novel context aware solicitations in various do-

mains such as industrial, educational and medical areas. For instance, a vigorous

depiction of daily activities can be valuable in assessing health and wellbeing, to

care for elderly people and to gain an appreciation of their ability to live indepen-

dently. The objective of activity monitoring is therefore to automatically detect

the activities of daily life. Body movement can be captured through wearable

sensors (e.g. accelerometers) to identify different transitions of movement pat-

terns in performing various activities e.g. sitting, walking, and running (Stikic

et al., 2011). The characteristics of such sensors are that they are lightweight,

unobtrusive and power efficient.

Change point detection is used to identify the transition from one underlying

time series generation model to another. The sudden change in mean, variance

or both may represent change points in time series data (Camci, 2010). Change

point detection algorithms can be categorized as being online or offline. Online

change detection algorithms are used in real time systems to observe, monitor

and process data as it becomes available. In the offline scenario, firstly the data

is collected and then the change point algorithm is used to collectively process all

the data. Online change point detection is sequential, fast and minimizes false

alarms. One of the problems that still needs to be addressed within this domain of

research is automatic change point detection in user activity when the transition

has occurred. This involves selection of an algorithm to form a fundamental

component of a real system and accurately detect a change point, which for

example solicits autonomously user interaction based on transition within an

input stream. Such in-time solicitation can be helpful in various situations like

annotating activities for making real world annotated datasets or for detecting

variation whilst monitoring patient vital signs for example heart rate.

The Crowd Labelling Application (CLAP)(Cleland et al., 2014) has been devel-

oped to collect labelled activity data at large scale in a free-living environment.

The purpose is to collect a large amount of data for training and testing in or-

3



Chapter 1

der to improve the generalization ability of the AR models. Also, ground truth

labels are recorded that represent the user activities. The implementation frame-

work of CLAP is shown in Figure 1.1. The AR module consists of two primary

components the AR module and a labelling prompt module. The AR module is

used to identify the stationary and non-stationary activities for example ‘stand

still’ and ‘walking’. The three second window with a total of three consecutive

windows (i.e. nine seconds of data) has been used to detect an activity in the

AR module. In addition, an activity class has been assigned using the Gaussian

Mixture Model (GMM). Moreover, once the transition is detected, the AR mod-

ule initiates the label prompting module by displaying icons on screen and thus

ground truth for the activity is recorded.

Figure 1.1: Framework of Crowd Labelling Application (CLAP)
(Cleland et al., 2014)

1.3 Change Detection Applications

This section discusses application areas of change detection techniques. In these

application areas, change detection refers to the deviation of time points in which

the characteristics of a model are subject to abrupt change in characteristics at

earlier unknown points. An abrupt change can be considered as any change that

occurs either instantly or very fast in the sampling frequency of measurement

(Basseville et al., 1993).
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1.3.1 Quality Control

Change detection has been used in quality control to monitor a continuous man-

ufacturing process to ensure quality. The online quality control procedures eval-

uate sequential measurement to make decisions. The production process can be

classified as in control or out of control. The production process is considered out

of control, when disorder happens in the in-control state of production process.

Thus, the change detection is used to detect the occurrence of sudden change

and the time happens in process. This detection is helpful to maintain the safety

of production process, quality and classification of output items (Wetherill and

Brown, 1991).

1.3.2 Navigation System Monitoring

Various common apparatuses are used in navigation systems for boats, planes,

rockets and other moving objects. Example of such systems are radio navigation

systems, inertial navigation systems and global satellite navigation for planes

(Sturza, 1988). The two sensors gyro and accelerometer are used in inertial nav-

igation systems. These sensors collect the motion and rotation information of

moving objects, which is further used to calculate the position and orientation

of an object relative to a known starting point. The safety and accuracy of

such systems can be achieved by deploying a redundant fault tolerant measure-

ment system. Change detection is used for such problems to identify abnormal

measurements in navigation signals, which is highly undesirable. The radio and

global satellite navigation systems also required continuous monitoring using

redundant measurement to avoid any abnormal measurement. The change de-

tection technique is also applied in these systems to address this issue.

1.3.3 Segmentation of Signals

The abrupt change detection based automatic signal segmentation has performed

a substantial role in recognition-oriented signal processing (Ukil and Zivanovic,
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2006). In the first step, recognition-oriented signal processing required an au-

tomatic segmentation of the input signal. The usefulness of a segmentation

approach is very pragmatic in numerous biomedical signal process applications

such as electrocardiograms (Corge and Puech, 1986), electroencephalogram (Ap-

pel and Brandt, 1983) and speech signals (Di Francesco, 1990). The input signals

are fragmented using a segmentation approach for homogenous segments and the

lengths are adjusted according to the local characteristic of the analyzed signal.

Also, the homogeneity for each segment is calculated using the mean or spec-

tral properties. The purpose of the segmentation algorithm is to minimize false

alarms, missed detection and low detection delay.

1.3.4 Seismic Data Processing

Seismic data analysis is the recording of ground motion. There are a number

of factors involved that unsettle the ground such as strong waves in the ocean,

sudden change in the atmosphere and human activity (Havskov and Ottemöller,

2010). Such factors cause a higher amplitude in the recording and are identified

as seismic events. This kind of events is mainly caused by the abrupt release

energy of seismic sources that cause earthquakes. Change detection approaches

are used to continuously monitor the seismic data and identify the changes if

they happen in the previous and current observations. Thus, an appropriate

response can be provided in timely manner.

1.4 Problem Statement

Recently, smart phones with inbuilt sensors have received immense considera-

tion from researchers for the purpose of activity recognition. Human daily life

activities and behavioural information can be captured through sensors to help

in developing telecare applications. A large amount of data can be captured

through sensors in a short period of time and used to identify meaningful events.

The data can be used to identify a change point which indicates transition to

a specific event. Change point detection can be used to classify the transitions
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occurring in time series data from one model to another. In time series data, the

abrupt change in mean, variance or both determines a change point. Different

machine learning and statistical techniques can then be used to detect changes

automatically from sensor data to identify different activities.

Sample sensor data identifies significant events which can be categorized into

different states. However, the huge volume of sensor data is difficult for humans

to understand in its raw format. Sensor data which relates to specific events such

as sitting, standing, walking and running needs to be identified and classified.

Therefore, it is impractical, inaccurate and expensive for humans in term of time

to manually perform such tasks.

Automatic change point detection in user activity is still a challenging task when

a transition occurred. The output of this study will empower a fundamental

component of a real system to accurately detect a change point in user activity.

Also, timely solicitation can be useful in different scenarios such as to annotate

different activities for generating real world data sets or detecting changes in

patient vital signs.

Analysis of the literature reflects that the existing change-point detection meth-

ods tend to be sophisticated in nature. Moreover, prior knowledge is often re-

quired about the possible change points, and their distribution which could make

the implementation of these methods more challenging for an automatic, online

change detection application. Furthermore, additional weaknesses could be the

observation of numerous estimation parameters, monitoring descriptors and tun-

ing variables. The problem increases when analyzing multivariate data simul-

taneously. There is also not much previous work on multivariate change-point

detection, which takes account of dependencies between different time-series, as

well as their individual profiles.

In the literature, a wide variety of sophisticated algorithms has been utilized

for change-point detection. The online and offline change point detection may

be application specific which requires quick or late response with low or high

computational cost. Online change point detection should be lightweight in

computational cost unlike offline change point detection. In the literature, the
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multivariate approach is not very common and usually used in offline scenarios

with high computational cost.

Moreover, we are here interested in running on-line change detection algorithms

on a phone or other smart device. We therefore require a lightweight algorithm

which is computationally efficient in terms of speed and storage requirements

while still achieving high classification accuracy.

1.5 Study Rationale and Objectives

Wearable sensors can be used to capture a large amount of data in a short period

of time and also to identify meaningful events. Change point detection can be

used to identify the transition from one generation model to another. The specific

detected change point might indicate a specific event in the data such as sitting,

standing, walking and running. This can be identified by a change in the mean,

variance or both of a time series data. Therefore, it is impractical, inaccurate

and expansive for humans in term of time to manually perform such tasks. The

aim of this research is as follows

“To investigate methods that can automatically detect changes in sensor data

streams, with the specific goal to support the annotation of datasets.”

To achieve this aim, a number of objectives have been identified as follows

Objective 1: To review the use of existing wearable sensors used for human

activity monitoring. In this review, different human activities are identified.

Moreover, an overview of state-of -the-art algorithms on change point detection

in time series data is presented.

Objective 2: To evaluate a multivariate approach for online change and identify

the optimal parameter set for accurate change-point detection in activity mon-

itoring with high metric measures such as Accuracy, Precision, G-Means and

F-Measure.
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Objective 3: To implement and evaluate optimization algorithms for the mul-

tivariate approach in order to automatically identify optimal parameter set for

accurate change-point detection.

Objective 4: To develop an evaluation framework to compare different mul-

tivariate and optimization approaches for change-point detection. The fusion

of such approaches could empower a system to automatically identify optimal

parameter set for accurate change detection.

1.6 Thesis Structure

This section summarizes the structure of this thesis and highlights the contents

of each chapter.

Chapter 2: A Taxonomy of Change-Point Detection in Activity Mon-

itoring

This chapter provides an overview of wearable sensors with a focus on change

detection in human activity monitoring. The review begins with basic concepts,

definitions on wearable sensors, different activities and multivariate date related

to different human physical activities. An overview of state-of -the-art algorithms

on change point detection is presented. This chapter concludes with discussion

of some challenges associated with multivariate data and change point detection.

Chapter 3: Parameter Exploration for Online Change Detection in

Activity Monitoring

This chapter describes the online change point detection algorithm MEWMA

for accurate change point detection in activity monitoring. The multivariate ap-

proach is used due to the nature of accelerometer data with 3 dimensions, which

are not independent to each other. The different parameters are explored man-

ually with the aim of achieving better performance and accurate change point

detection.
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Chapter 4: Parameter Optimization for Online Change Point Detec-

tion in Activity Monitoring Using Genetic Algorithm (GA)

This chapter presents the genetic algorithm (GA) to automatically identify an

optimal parameter set for each activity so as to maximize the fitness function

such as F-measure. A genetic algorithm is used to mimic the process of evo-

lution by taking a population of strings, which encodes possible solutions, and

combining them based on the fitness function to produce solutions that are high

performing. The F-measure is used as a fitness function to find the overall effec-

tiveness of the activity by combining the precision and recall.

Chapter 5: Evaluation Framework to Analyze Different Multivariate

Approaches and Optimization Techniques

This chapter discusses the evaluation framework of different multivariate ap-

proaches for change point detection in activity monitoring. Different optimiza-

tion approaches are also used to automatically identify an optimal parameter

set for accurate change-point detection. The different metric measures are used

for evaluation of obtained results for accurate change-point detection. Also, a

t-test is also performed to find statistical significance for all evaluation metrics

and the results justified that MEWMA with PSO is statistical significance with

95% confidence achieved for all metrics measures.

Chapter 6: Conclusion and Future Work

This chapter presents the conclusion to this work and highlights the future di-

rection.
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Figure 1.2: Overview of Thesis Organization
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A Taxonomy of Change-point Detection in
Activity Monitoring

2.1 Introduction

This chapter provides an overview of wearable sensors with a focus on change

detection in human activity monitoring. The review begins with basic concepts,

definitions on wearable sensors, different physical activities and multivariate data

related to human physical activities. An overview of state-of-the-art algorithms

on change point detection is presented. This chapter concludes with discussion

of some challenges associated with multivariate data and change point detection.

2.2 Sensors

Sensors are sophisticated devices that is used to detect and respond to signals.

They “are devices that acquire information about stimuli in the outside world”

(Francis et al., 2009). A sensor converts a physical parameter such as blood

pressure, temperature or humidity etc. into a signal that can be measured elec-

trically. However, sensors are different in type, purpose, output signal and tech-

nical infrastructure. Sensors generate signals in response to stimuli that can be

measured. In recent years, these sensors have become low cost, wireless, and

deployable in real world, mobile settings (Cook and Krishnan, 2015). There are

various types of sensors available for activity learning and monitoring. Here we
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focus on health sensors that are attached to an individual that is performing an

activity. The different kind of wearable sensors is given in Figure 2.1.

2.2.1 Wearable sensors

Wearable sensors are widely discussed in the literature for the purpose of activity

recognition. Moreover, the sensors attached to an individual body collect data

about gesture, movement and actions performed by an individual. These sensors

can be sewn into smart garments, worn as watches or placed on the human body.

However, in recent years due to technology advancement, these wearable sensors

are also embedded in smart phones that are routinely carried by an individual

as they perform their daily life activities.

Figure 2.1: Different wearable sensors used to capture human movement

A number of wearable sensors are used such as accelerometer, gyro and Mag-

nometer in the literature for the purpose of activity monitoring.
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2.2.1.1 Accelerometer

The most common sensor used in activity monitoring is an accelerometer which

is either worn or carried by an individual. Such kind of sensor is very effective

and efficient in monitoring body actions that involves repetitive motions such as

sit, walk, stand, run etc. (Chen et al., 2012). The accelerometer is an electrome-

chanical device which measures acceleration forces. The force can be static like

the constant force of gravity or dynamic like moving or vibrating accelerometers.

Acceleration can be detected in two or three axes to sense motion and orienta-

tion (Chen et al., 2012). The three-dimensional accelerometer sensor measures

acceleration along the x, y and z axes as shown in Figure 2.2. The acceleration

can be calculated as change in velocity over time as a =∆v
∆t

. A time stamp can

also be returned with the three axes readings when the person carries the de-

vice so the change in direction or velocity can help in detecting the change in

acceleration, which makes such sensors optimal for detecting different type of

movements. Furthermore, accelerometers are heavily used in smart phones to

measure the physiology of the human movements. Also, the acceleration data

can identify notional patterns is a specific time-period, which is useful and helpful

in detecting and recognition complex human activities. However, an actometer,

only measures the body movement and acceleration in different directions. The

device ’counts’ the amount of movement and the higher the count, the more

active the wearer (Eaton, 1983). These acceleration changes are converted into

signals which are used for further processing as shown in Figure 2.3. The start

and end points of a motion can be identified by using the acceleration changes in

the data. These signals provide information to facilitate context awareness such

as motion, acceleration and gesture.

2.2.1.2 Gyroscope

The gyroscope sensor is used to measure the earth’s gravity, which helps to

determine the orientation. The model has a freely-rotating plate known as a

rotor, attached onto a spinning axis in the centre of a big and stable wheel
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Figure 2.2: A smart phone with 3 axis accelerometer signal

(Chen et al., 2012). In contrast to an actometer, the gyro measures the change

in angular velocity over time and it is calculated as v = ∆θ
∆t

.

Figure 2.3: A sample of 3 axis of an accelerometer signal for the stand to
walk activity
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However, the gyro sometimes experiences accumulated error due to drift but

is mostly used in combination with other sensors to provide more information

about the motion.

2.2.1.3 Digital compass

The digital compass is equipped with a sensor called a magnetometer with a

simple orientation in relation to earth’s magnetic field (Calzada et al., 2014). It

can auto rotate the digital map reliant on the physical orientation. It is also

valuable for detecting and locating metallic objects within its sensing radius.

The human activities can be modelled based on their proximity to these detected

objects.

2.2.1.4 Barometer

The Barometer sensor is widely used to measure the atmospheric pressure. The

pressure is calculated to forecast short term changes in weather. Hence, the

primary aim is to detect atmospheric change and pressure, specifically weight of

air. Also, the barometer sensor is used to detect useful events such as a closing

door.

2.2.1.5 Pedometer

The pedometer is an electromechanically device that is used to detect the motion

of hands or hips and count the number of steps taken by an individual. However,

the actometer is used to capture the body movement rather than time (Eaton,

1983). As discussed earlier, a number of body-attached sensors have been used

to capture and evaluate the body movement in free living environment as shown

in Figure 2.1. However, the accelerometer is widely being accepted and becom-

ing popular for activity monitoring in a free living environment (Mathie et al.,

2004). The accelerometers have considerable advantages in monitoring of human

movement. As such they measure the accelerations in motion along reference

axes. Also, using accelerometers, the frequency and intensity of physical activ-

ity are analysed simultaneously, which makes them preferable to the pedometer
17
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and actometer, which are attenuated by impact or tilt. Additionally, some ac-

celerometers can also measure the gravity to provide tilt sensing information

with respect to a reference plane when they rotate with objects. Such features

of accelerometry data provides sufficient information about the monitoring of

different physical activities (Yang and Hsu, 2010).

2.3 Activities

Wearable sensors have been used widely in the literature to monitor different

activities performed by an individual. Physical activity is defined as "any bodily

movement produced by skeletal muscles resulting in energy expenditure above

resting level" (Caspersen et al., 1985). The objective of human activity analysis

is to identify actions and intent of a user from an observation. Thus, activity

learning is a significant concept because it is critical for understanding human

behaviour. An individual can perform the number of activities in his daily life

such as walk, sit, run, upstairs, downstairs etc. The different types of activities

are categorized such as Actions, Transitioning activities and Activities of Daily

Living are shown in Figure 2.4. The Actions are considered as a movement of

specific parts such as throwing or holding something, bending arm or shaking

feet (Murao and Terada, 2014). The physical activities such as sitting, standing,

walking and running are considered low level activities because it involved body-

wide movement and postures. Moreover, high level activities are a collection of

low- level activities and consist of a number of activities in a sequence such as

watching TV, driving etc. (Huynh, 2008).

The complexity of these activities varies and depends on the type of activities

performed. Activities which are static in nature such as standing or sitting are

easier to evaluate than the activities like walking or running because they are

periodic in nature. Moreover, the activities such walking, running, upstairs and

downstairs are also very hard to separate because of high motion similarities in

movement patterns (Khan, 2011). Therefore, sensors which are able to detect

motion and acceleration have gained interest in motion aware system develop-
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Figure 2.4: Different kind of activities

ment. The most widely used inertial sensor is the accelerometer which can be

used as an expedient tool for assessment of human motion in a free living envi-

ronment (Mathie et al., 2004).

In the literature, various methods have been used to retrieve valuable informa-

tion from raw sensor data. The main steps can be classified as raw sensor data

acquisition, segmentation and windowing, feature extraction and detection. The

block diagram of the whole procedure is shown in Figure 2.5.
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Figure 2.5: Block Diagram of the whole procedure

2.4 Segmentation

As discussed in section in 2.3, once the activities are captured then the segmenta-

tion algorithms are used to analyse the input data. Segmentation is the process

of dividing the input data into segments in order to get useful information from

a continuous stream of data. The classifier cannot produce meaningful events

without proper selection of segmentation or subsequence (Lovrić et al., 2014).

An input subsequence with high discriminative power enables the classifier to

produce better results. The segmentation is divided into classes supervised and

unsupervised. In supervised segmentation, the sample data is provided along

with ground truth labels from which appropriate segment boundaries can be

learned while, in unsupervised segmentation, features of the data are utilized

alone, without supervised guidance to identify the boundaries in the sequence

data. In online scenario, the window is defined simultaneously as the data ar-

rives from the continuous real-time activity. However, in the offline scenario,
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first data is collected and then segmentation is applied to all data as a whole.

Moreover, continuous sensor data is difficult to analyse and challenging for de-

tecting change in continuous activity. Therefore, in this study we are focusing

on unsupervised segmentation technique to properly segments continuous input

data streams. The different methods that have been used for segmentation of

time series data are as follows.

2.4.1 Sliding window algorithm

In this approach, a small consecutive sequence is initialized for a specific time of

1s, 2s, or 3s until the end of the time series data. Each segment from the left

is traversed at the first data point of the time series, then the algorithm tries

to approximate the data at the right with increasingly longer segments (Keogh

et al., 2001). At a specific point i, the potential segment for an error is greater

than the user threshold, thus the sub-sequence until i − 1 is transformed into

a segment. The approximation error of the linear segment is calculated using

the sum of squares, or the residual error. This is calculated by taking all the

vertical differences between the best-fit line and the actual data points, squaring

them and then summing them together.Then i is incremented and the process

continues until the whole time series is converted into a piecewise approximation.

The error is computed in the same way for algorithms in Figures 2.7 and 2.8.

The pseudo code of the sliding window algorithm is shown in Figure 2.6. The

sliding window algorithm is interesting due to its simplicity, intuitiveness, online

property and has computational cost of O(nL) where L denotes the segment

average length (Avci et al., 2010). The analysis of sequential patterns in stream

data are very important because it can be exploited to improve the prediction

accuracy of our classifiers. Therefore, the sliding window algorithm has been

used in diverse areas such as to analyze weather forecast data (Yahmed et al.,

2015), ECG data analysis (Jeon et al., 2014) and statistical data analysis (Yu

et al., 2014). The aim is to find and explore the number of intervals and width

of intervals and to process them.

21



Chapter 2

Figure 2.6: Sliding Window Algorithm

2.4.2 Top-Down Algorithm

A top down algorithm has also been used for segmentation by dividing the time

series data into a number of segments and splitting the data at their best loca-

tions. The two segments are evaluated and checked that the approximation error

is below a user threshold. If not, the algorithm continues recursively and divides

into subsequence’s until the threshold condition is fulfilled.

The pseudo code of Top down algorithm is shown in Figure 2.7. This algorithm

works recursively with a computational cost of O(n2M) where M identifies the

segment’s number(Keogh et al., 2001). The Top Down algorithm is used in data

mining and image processing fields. In the data mining field, the approach has

been used at multiple abstraction level in order to identify a framework for mining

sequence databases (Li et al., 1998). Also, (Shatkay and Zdonik, 1996) has used it

for time series databases that could be able to support and approximate distinct

and complex queries. Moreover, in image processing, the approach has been

used on images to detect discontinuities that are potentially indicative of object

boundaries (Borenstein and Ullman, 2008).
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Figure 2.7: Top Down Algorithm

2.4.3 Bottom up Algorithm

The Bottom up approach is the complement of the top down algorithm and

initializes segmentation of time series data by dividing the data of length n into

n/2 segments at best approximation.

The adjacent sub sequences are fused to get larger segments of time series data

and computational cost is also calculated for this process simultaneously. The

algorithm is used to iteratively fuse the lowest cost pair till stopping criteria are

met. The adjacent sections i and i+ 1 are fused and the algorithm stores values.

Initially, the new segment with its right neighbour merging cost is calculated and

then the i−1 segment with its new larger neighbour merging cost is recalculated.

The computational cost is the same as sliding window algorithm. The pseudo

code for the algorithm is shown in Figure 2.8.

The approach has been used extensively in piecewise linear approximation of time

series data (Van Laerhoven and Schiele, 2009). Furthermore, the algorithm has

been used in system dynamics and data mining in order to monitor and analyze
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various events occurs in the data (Wirsch, 2014). In medical data analysis, the

algorithm has also been used to provide a high level of representation for a

medical pattern matching system (Hunter and McIntosh, 1999).

Figure 2.8: Bottom Up Algorithm

As discussed earlier, all segmentation algorithms have been used to segment and

extract relevant information from a large time series dataset. However, the se-

lection of appropriate segmentation algorithm must be based on a consideration

of features such as whether the algorithm is online or offline and the minimum

time complexity utilized in the processing of data. In our study, we used a slid-

ing window algorithm because of minimum time complexity utilization which

can run in an online scenario. The comparison summary of the aforementioned

segmentation algorithms is shown in Table 2.1.
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Table 2.1: Summary of three segmentation algorithms

Algorithm Online Time Complexity

Top-Down No O(n2M)

Bottom Up No O(nL)

Sliding Window Yes O(nL)

2.5 Feature Extraction

The objective of feature extraction is to find and extract more prominent features

of the data to accurately represent the original data. Specifically, the large

volume of input data can be represented as a minimum set of features denoted

as a feature vector and the process is known as feature extraction. Accurate

change point detection can be achieved by using these feature vectors in a data

segment to identify various activities. The extracted feature can also be used to

give as an input to classification algorithms (Preece et al., 2009). The features

extracted from sensor data can be categorized into three domains, namely Time

domain, Frequency domain and Time-frequency domain.

2.5.1 Time domain features

The time domain features are provided for analysis of mathematical functions,

physical signals or time series data. The time domain indicates the variation

in amplitude of signal with time. In the time domain, the extracted features

determine the key observation of waveform features and signal statistics. The

following features are used in the time domain to extract useful features (Dargie,

2009) mean, variance, covariance, standard deviation and correlation.

2.5.1.1 Mean

The mean is calculated as the average of the input data. The mean is calculated

using Equation 2.1.
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µ =

∑
xi
N

(2.1)

Where
∑
xi is the sum of all values and N is the number of the data values.

2.5.1.2 Variance

The variance determines how distant each number is from the mean in the

dataset. The variance measures the differences between each value in the dataset

from the mean, squaring the differences and divides the sum of the square by the

total number of values in the dataset. The variance is calculated using Equation

2.2

σ2 =

∑
(xi − µ)2

N − 1
(2.2)

where xi denotes each value in the dataset, µ is the mean of dataset and N is

the total number of values in the dataset.

2.5.1.3 Standard deviation

The standard deviation is used to measure and evaluate the extent of variation

or dispersion for a set of data values. A calculated standard deviation close

to zero is considered as the data point close to mean otherwise, a high value

represents the situation where the data points are scattered over a large range of

values. The standard deviation is the square root of the variance. The standard

deviation can be calculated using Equation 2.3.

Sx =

√∑
(xi − µ)2

N − 1
(2.3)

where xi s the values in the dataset, µ is the mean and N is the total number of

values in the dataset.
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2.5.1.4 Covariance

The covariance is used to measure the association between two variables such

as x is associated with changes in a second variable y. In other words, covari-

ance measures the extent to which two variables are linearly associated. The

covariance can be calculated using Equation 2.4.

COV (x, y) =
1

n− 1

(
n∑
i=1

(xi −X)(yi − Y )

)
(2.4)

where xi and yi are the values of dataset, X and Y is the mean and n is the size

of dataset.

2.5.1.5 Correlation

Correlation is a statistical measurement of the relationship between two or more

variables. Correlation measuring how well a linear relationship fits the observed

data.The correlation of two variables could be positive, negative or zero. The

variables are said to be positively correlated where higher values of one variable

are associated with high values of the other variable while for negative correlation,

the high values of one variable are associated with the low values of the other. A

zero correlation means that the variables are uncorrelated. The correlation lies

between +1 and −1. The correlation can be calculated using Equation 2.5.

ρx,y =
COV (x, y)

σxσy
(2.5)

where COV (x, y) is the covariance and σx , σy are the standard deviations of x

and y.

Moreover, the cross correlation has also been used in the literature to evaluate

the similarity between acceleration signals from various axes for same or various

segments (Bao and Intille, 2004).
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2.5.2 Frequency domain features

The frequency domain is used to analyze data using a mathematical function

or a signal with respect to frequency. Analysis of the frequency domain is most

widely used in signals or functions that are periodic over time. Transformation

is the most important concept of this domain and is used to convert a function

from the time domain to frequency domain. The frequency spectrum provides

an alternate view of the signal which identify how much of the signal lies within

each frequency band over a range of frequencies. The frequency domain features

can be obtained using Fourier transforms for example, the window of sensor data

can be transformed to the frequency domain using the Fast Fourier Transform

(FFT). The output of this transformation gives a set of coefficients which identify

the amplitude of the signal frequency and energy distribution of the signal. There

are different metrics such as maxima, energy, entropy and median entropy used

to represent the spectral distribution of the signal energy.

2.5.2.1 Maxima

In the frequency spectrum, the n-maxima is used for different capacities to com-

pare the dominant frequencies. The significant size of frequency sample can be

obtained by summing the ith maximum and dividing by the total number of max-

ima. After completing this, evaluation is made by using the nth maximum and

inspecting its deviation from the average maximum. For example, for human

movement n = 10 and for a car n = 1000 are normally used because mostly low

frequencies arise in human movement.

2.5.2.2 Energy

The spectrum structure is revealed by the set of sensor reading of spectrum en-

ergy. In this scenario, spectrum energy indicates the overall energy analysis of the

sensor readings. To evaluate the spectrum, first it is divided into n sub-bands

and then the energy in each band is normalized using the total energy of the

spectrum. The correlation test is applied to each sub band to evaluate numer-
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ous measurements (Dargie, 2009). A higher correlation between measurements

signifies a small variation between sub bands energy. This paper concluded that

correlation can be measured by using the average difference of sub band ener-

gies. It is calculated as the sum of the squares of the magnitude of the frequency

content as given in Equation 2.6.

SE = f(n)2 (2.6)

where f is the number of frequency components.

2.5.2.3 Entropy

The normalized information entropy of discrete FFT coefficient can be calculated

using entropy. The entropy also helps in identifying change in signals with iden-

tical energy values but corresponding to numerous activity patterns. Entropy is

used to identify activities with simple acceleration patterns and also with more

complex patterns (Bao and Intille, 2004).

For example, uniform movement of legs is observed in cycling but in running

more complex patterns are observed and therefore many FFT components are

displayed. This difference indicates the entropy is higher frequency domain for

running than cycling. To find spectral entropy, first the FFT of the signal is

calculated then the Power Spectral Density (PSD) of the signal is calculated by

simply squaring the amplitude spectrum and scaling it by number of frequency

bins using Equation 2.7.

P̂ (ωi) =
1

N
|X(ωi)|2 (2.7)

Now, normalize the calculated PSD by dividing it by a total sum using Equa-

tion 2.8. The normalized signal is further used to find the entropy and can be
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calculated using equation 2.8.

pi =
P̂ (ωi)∑n
j=1 P̂ (ωj)

(2.8)

The normalised signal is further used to find the Power Spectral Entropy can be

calculated using equation 2.9.

H = −
n∑
j=1

pi ln pi (2.9)

2.5.3 Time frequency domain features

This approach is used to evaluate features of both time and frequency domains.

The wavelet approach is used to analyse complex signals and the primitive in-

tent is to detect transitions between different activities (Preece et al., 2009).

The original signal is divided into a series of coefficients which incorporate the

temporal and spectral information about the original signal. These coefficients

help to identify a localized temporal instance, which is a change in frequency

characteristics of the original signal. This approach is used in the sensor signal

to identify points in the signal which helps in detecting change from one activity

to another. The wavelet analysis is used to determine time-frequency features

that represent the original signal.

2.5.3.1 Wavelet Coefficients

A number of studies has shown that time-frequency features can be analysed by

the discrete wavelet transform (DWT) (Sekine et al., 2000) (Nyan et al., 2006).

In this approach, the original time domain signal with maximum frequency f

is divided into a linear approximation through a low pass filter and a high pass

filter. This decomposition enables the half band filter to accurately regenerate

the original signal without losing any information. However, in the consequent

decomposition, the approximation signal divides again from the previous level
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to the second approximation with more observable coefficients (Mallat, 1989).

This operation is repeated until the appropriate decomposition level. In the lit-

erature, various set of features have been extracted using the discrete wavelet

transform (DWT) from sensors such as accelerometers. The wavelet analysis can

be applied to body worn sensors to decompose signals into several coefficients.

These coefficients correspond to the specific data of each frequency band. The

various types of DWT such as Haar and Daubachies are used to decompose the

signal. In (Sekine et al., 2000), the first set of wavelet features is proposed using

accelerometer data. The accelerometer signal is decomposed using the wavelet

transform and the feature characterize as the signal power measurement. The

sum of squares is used to calculate the coefficients at level 4 and 5. The accel-

eration data is sampled at 250Hz. This approach can also be used to identify

wavelet coefficients for lower sampling frequency. In body worn sensors, wavelet

analysis has been used to identify the points of change in frequency content of

sensor signals. In (Nyan et al., 2006), wavelets were used to identify such points

in order to evaluate the transition times among various type of gait data analy-

sis. The above extraction techniques have been widely used in the literature for

feature extraction from the observed data (Preece et al., 2009). The character-

istics, such as cost, robustness and expressive power, of features extracted using

different extraction techniques were analyzed. The time domain features have

advantages over other techniques such as they do not require the laborious task

of framing and fourier transformation, avoid complexity of pre-processing and

consume less energy (Dargie, 2009). Therefore, they can be deployed in resource

constrained environment. Hence, in our experiments, we have used accelerometer

data so time domain features are used for feature extraction form the observed

data.
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2.6 Different approaches for change point detec-

tion in time series data

Change point detection can be used to classify the transitions occurred in time

series data from one model to another. In time series data, the abrupt change in

mean, variance or both determines a change point (Camci, 2010).Change point

algorithms can be categorized as online or offline. The online change detection

algorithms are used in real time systems and used to observe, monitor and pro-

cess data concurrently as available. However, in the offline scenario, first the data

is collected and then the change point algorithm used to collectively process all

data. A number of algorithms have been used in the literature to detect change

in time series data. An activity-recognition algorithm was previously used to de-

tect changes in daily life activities with the help of a Gaussian mixture classifier

(Cleland et al., 2014) based on mobile data. Some activities, such as stationary

and nonstationary, were classified as standing-still and running, respectively. The

authors have used three consecutive windows of nine seconds each in the entire

activity-detection process in their proposed solution. Moreover, some activities

such as stand-still and walking could be detected and labelled simultaneously at

changeover points. Some of the limitations of the approach were the short delay

that caused incorrect detection of user activity and unsuitability in the real-time

scenarios in such situations when the user transitions from nonstationary “walk-

ing” to stationary “standing-still”. The cumulative sum control chart (CUSUM)

is a technique that is effective in detecting small shifts, using the mean of the

process in cardiovascular events (Zhang et al., 2011). The authors have used

some core methods in order to evaluate physiological monitoring modules. The

core methods are the hierarchal online activity recognition method and the bio-

metric extraction method. In the hierarchal online activity-recognition method,

first the pre-processing is performed using a finite impulse response filter. In

the second step, the fast Fourier transform (FFT) has been used to convert the

signal from the time domain to the frequency domain and extract the mean and
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energy feature from the pre-processed data. Finally, those features having direct

impact on the performance of the activity recognition algorithm were selected.

In the biometric extraction method, first the heart rate values are extracted from

the echocardiogram (ECG) signal. The FFT was applied to attenuate low fre-

quency noise and eliminate waveform irregularities from the signal. Finally, the

2-pass filter was used to find the local maxima of the ECG signal and detect

the significant R-peaks. However, CUSUM cannot detect sudden shifts in ac-

celerometer data and is therefore ineffective for such changes. An independent

random sequence has been used by (Jain and Wang, 2015) to detect changes

using a univariate change detection algorithm. In the first step, the index of the

changeover for the most likely point inside the processing window is calculated.

Secondly, the hypothesis is verified for the expected change point whether cor-

rect or incorrect for the expected change. The algorithm utilized small memory,

computationally inexpensive and did not required knowledge of underlying dis-

tribution. Furthermore, the authors in (D’Angelo et al., 2011), have proposed a

fuzzy Bayesian change-point detection technique using the posterior probability

of the current run length in time-series data. The proposed technique works in

two folds. First, the fuzzy set technique is applied to cluster and transform the

initial time series data into a new time series with a beta distribution. Secondly,

the new time-series data is further used by a Bayesian change-point model to

detect the change points. Then, the change points’ positions were estimated us-

ing the Metropolis-Hastings algorithm. The advantage of using this approach is

that it does not require a priori knowledge of the distribution, but it is computa-

tionally expensive. Similarly, the One-Class Support Vector Machine algorithm

(OCSVM) (Vlasveld, 2014) has been used for change detection in human ac-

tivities. The high dimensional hyper sphere has been used to model the sensor

input data. Moreover, the radi of hyper sphere is used to analyze and evaluate

the distribution of change point detection. The increase or decrease in changes

corresponds to various activities. The data is modelled by a high dimensional

hyper sphere. Change point detection is the distribution based on the analysis

of radii of the hyper sphere, which changes i.e. increases or decreases corre-
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sponding to various events. The early drift detection (EED) approach has been

used for detecting small and abrupt change in time series data (Baena-García

et al., 2006). In this approach, the distance between two classification errors

was used and calculated from the average distance and its standard deviation. If

the calculated distance is small, the change is detected otherwise the new point

belongs with the previous points. The event detection in human-activity moni-

toring can significantly reduce transmissions (Brusey et al., 2009).The transition

between postures is difficult to classify and therefore remains unlabelled. The

data is captured through accelerometer sensors placed on different parts of the

body. Moreover, a posture-activity monitoring system has been developed that

can classify posture from the observed data. Time-based filtering, a naïve voting

scheme, and an exponentially weighted voting scheme have been used to improve

the posture classification accuracy. The exponentially weighted voting scheme

outperforms than other schemes in event detection. Also, the transmission is

reduced from an original 10 Hz to about 600 event transmissions in 30 min.

The kernel density estimator approach has been used in (Chen et al., 2012). In

this approach, the density estimation ratios have been calculated for population

of data. Furthermore, these estimation ratios were used to identify the change

points in the data. This approach has the advantage of automatic model selection

and the convergence property. However, the disadvantages include difficulty in

calculating density estimation for high-dimensional data, which can be slow and

less robust. The template matching algorithm known as dynamic time wrapping

(DTW) (Murao and Terada, 2014) has been developed for gesture detection. For

each activity one template is used and the number of templates identifies the pro-

cessing time for recognition. In DTW, one template from each activity has been

used with a number of templates that directly affects the computational perfor-

mance. Furthermore, the subspace identification algorithm has been proposed in

(Kawahara and Sugiyama, 2009) for change point detection in time series data.

The objective is that subspace is used to span by the columns of an extended

observability matrix which is approximately equal to the one spanned by the sub

sequences of time series data. In this technique, the estimation of change point
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detection is based on subspace identification, the extended observability matrix

column space of subspace method (SSM) and assessing newly arrived data based

on this subspace. The advantage of this approach is to handle rich amount of

data more precisely than conventional approaches due to its implicit utilization.

The Kullback-Leibler Impotence Estimation Procedure (KLIEP) has been devel-

oped for change point detection in time series data (Sugiyama et al., 2008). The

density estimation ratios of population data are used in KLIEP algorithm. This

approach has the advantages of convergence properties and automatic model

selection. However, the limitations are that the density estimation for high di-

mensional data is difficult to calculate which makes it slow, less robust and also

have a convex optimization problem. A change detection method with feature

selection for high dimensional time series data has been proposed in (Yamada

et al., 2013) known as additive Hilbert-Schmidt Independence Criterion (aH-

SIC). It used weighted sum of HISC values between features and their associated

pseudo binary labels. The HSIC is also known as a kernel based independence

measure because it used feature selection during its detection measure estima-

tion. The advantage of this approach is that it uses those features which have

more impact on abrupt changes occurs in the data. The Auto-associative Neural

Networks (AANN) (Hu et al., 2007) has been used to detect anomaly detection

in multivariate time series data. The AANN consist of three layers called input,

hidden and output layer. The number of neurons in the input and output layers

are the same while there are less neurons in the hidden layer. The AANN is

trained using the input layer to encode the data using the input layer and forms

principle components at the bottleneck or hidden layer. Moreover, the principle

components are decoded to original data using the output layer. The network is

trained using the input data and testing data is then applied to detect changes for

anomaly detection in time series data. The early detection of an anomaly might

help in fault diagnostic to take timely action for maintenance. The proposed

approach is very effective for anomaly detection but an immediate convergence

of AANN required a high percentage of normal data for training. Also, the

time complexity is quite high and not suitable to be use in a real time scenario.
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The Information-Theoretic approach (Dasu et al., 2006) has been used to detect

change in multi-dimensional data streams. This approach is a nonparametric

approach and requires no assumption of underlying distribution. The relative

entropy also called Kullback-Leibler distance has been used to measure the dif-

ference between two distributions. Moreover, the theory of bootstrapping using

statistical methods has been used to identify the statistical significance of cal-

culated measurements. However, more complex methods are required for K-L

distance to increase the change detection performance and power significance of

measurement.

2.6.1 Episode detection algorithm

The Minimum Description Length (MDL) principle is used in (Tatti and Vreeken,

2012) to detect and identify the sequential patterns that encapsulate the best

data in the sequence data. The sequential data is encoded using sets of serial

episodes and the encoded length is further used as a quality score. Here two

heuristic approaches such as SQS-Candidates and SQS-Search have been used to

efficiently identify the best patterns in the sequence data. The SQS-Candidates

approach was used to filter a candidate collection over a large data set and SQS-

Search was used to efficiently mine models directly from data. The accurate

detection of an abnormal episode in a sequence data within a fixed size window

has been investigated in (Atallah et al., 2003). The episode is considered as an

ordered collection of subsequences of a large data stream. The problem of finding

frequent episodes in an event sequences with respect to window size constraint

is difficult to analyse and evaluate. Probabilistic analysis, similarly to a parallel

episode case and an arbitrary set of serial episodes, has been used to find an ab-

normal episode in sequence data streams. A specific threshold has been used for

rejecting the null hypothesis for each window size and identifying an abnormal

episode. In (Laxman et al., 2007a) a windows-based counting algorithm known

as WINEPI has been proposed for discovering frequent episodes in sequential

data. The framework consists of defining episodes as partially ordered sets of

events, and looking at windows on the sequence. The WINEPI algorithm has
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been used for finding all episodes from a given class of episodes that are frequent

enough. The algorithm was based on the discovery of episodes by only consid-

ering an episode when all its sub episodes are frequent, and on an incremental

checking of whether an episode occurs in a window. The implementation shows

that the method was efficient in detecting episodes but has high computational

cost. A new notion for episode frequency has been proposed which is based on

the non-overlapped occurrences of an episode in the given data sequence. An ef-

ficient counting algorithm (based on finite state automata) has been presented in

(Laxman et al., 2007b) to obtain the frequencies for a set of candidate episodes.

This algorithm has the same order of worst case time and space complexities

as the windows-based counting algorithm of (Laxman et al., 2007a). However,

through some empirical investigations, the non-overlapped occurrences based al-

gorithm has been found to be much more efficient in terms of the actual space

and time needed, and, on some typical data sets, it runs several times faster

than the windows-based algorithms. Another important advantage of the non

overlapped occurrences count is that it facilitates a formal connection between

discovery of frequent episodes and learning of generative models for the data

sequence in terms of a specialized family of Hidden Markov Models (Laxman

et al., 2005).

2.6.2 Android activity recognition API

Activity recognition API in Android systems is an API (ActivityRecognition,

2018) that automatically detects user-activities like still, running, walking, cy-

cling, tilting, and driving etc. by periodically reading short bursts of sensor

data. Such APIs are currently implemented and used in many fitness apps such

as GoogleFit in order to provide the information about the user activities e.g.

the distance the user travelled, and the steps taken. Mobile Apps can integrate

activity recognition without dealing with complexity of pattern analysis on raw

sensor data through the activity recognition API (Zhong et al., 2015). Therefore,

rather than to go through the whole process of data collection, feature extraction

and classifier training, software developers can utilise this AR service through
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an API. Initially four types of activities were supported: Stationary, On Foot,

Cycling and in Vehicle. In an update, three more activities were added: Walk-

ing, Running and Tilting. According to its documentations1, the Android AR

service makes use of low-power, on-board sensors to recognise the user’s current

physical activity with efficient energy consumption (ActivityRecognition, 2018).

Analysis of the literature reflects that the current change-point detection meth-

ods tend to be more sophisticated in nature. Modelling the data distribution

in a multidimensional data stream is a challenging task, where most of the ap-

proaches discussed in (Jain and Wang, 2015), (Zhang et al., 2011), (Dasu et al.,

2006), (D’Angelo et al., 2011), (Baena-García et al., 2006),(Brusey et al., 2009)

and (Murao and Terada, 2014) have been applied only for univariate data and

most of the approaches discussed in (Kawahara and Sugiyama, 2009), (Sugiyama

et al., 2008), (Yamada et al., 2013) and (Hu et al., 2007) have been applied offline.

Moreover, prior knowledge is often required about the possible change points and

their distribution which could make the implementation of these methods more

challenging for an automatic, online change detection application. Furthermore,

the other weaknesses could be the observation of numerous estimation parame-

ters, monitoring descriptors and tuning variables. The difficulty increases when

multivariate data are analysed simultaneously.
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Parameter Exploration for Online Change
Detection in Activity Monitoring

3.1 Introduction

This chapter discusses online change detection in univariate and multivariate

data in activity monitoring. In recent years, smart phones with inbuilt sen-

sors have become popular for the purpose of activity recognition. The sensors

capture a large amount of data in a short period of time which contains mean-

ingful events. The change points in this data are used to specify transition to

a distinct event which can be used in various scenarios such as to identify pa-

tient vital signs in the medical domain or requesting activity labels for generating

real-world labelled dataset. Within this chapter a detailed overview of the Multi-

variate Exponentially Weighted Moving Average (MEWMA) algorithm has been

provided; MEWMA is an existing technique and used as an innovative approach

for change point detection. Moreover, the online univariate approach from the

literature has been discussed and implemented for change point detection. This

provide a benchmark for evaluation of MEWMA. This chapter evaluates the on-

line univariate approach and standard MEWMA results and also improve the

standard MEWMA for change point detection by exploring and tuning the dif-

ferent parameters such as λ (the “forgetting factor”), window size and significance

values.
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3.2 Change Detection

Change detection can be defined as the process of identifying differences in the

state of an object by observing it at different times. Hence, a statistical frame-

work is required to develop methods for change detection. In time series data,

the point at which the statistical properties of an underlying process change are

known as a change point. The change in mean, variance or both can represent

the change in time series data (Ross and Adams, 2012). The change detection

in mean and variance can be shown in Figure 3.1. Also, the change in mean,

variance and covariance can be shown in Table 3.1.

In the literature, the primary focus has been on offline change detection, when

the data has been received and analyzed as a whole for change point detection.

However, this thesis mainly focus on online change detection where data is ob-

served, monitored and analyzed sequentially as soon as the new data becomes

available. The change detection methods are used to identify and locate the pos-

sible change points in the previous observations. The change detection methods

can be classified into parametric and non-parametric. In parametric method,

the detection method requires distribution knowledge about the data while in

non-parametric, the detection methods does not require the assumption of the

knowledge distribution for the data (Eckley et al., 2011).

As presented in Table 3.1, the mean and variance is changing abruptly from

region to region and detected as a change point which is shown in Figure 3.1.

Table 3.1: Mean and Variance

Mean (µ) variance (σ)

0.4292 0.5036
3.7432 5.8373
−5.0938 21.0956
1.9392 1.2143

0.000091 2.1943
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(a) Change in Mean

(b) Change in Variance

Figure 3.1: (a) and (b) Change points in time series data
(Ross and Adams, 2012)

41



Chapter 3

Furthermore, the dataset was collected using 3-axis accelerometer by (Zhang

et al., 2011) has been used to collect and captured data for different activities

performed by each participant. These activities consist of Sit to Stand, Stand to

Sit, Stand-Walk Corridor-Stand, Stand-Walk Downstairs-Stand and Stand-Walk

Upstairs-Stand. In all these activities, the x, y and z axis show the acceleration

magnitude of the input signal and the ground truth changes identifies the actual

change happens in these activities. The sit to stand and stand to sit activity are

shown in Figure 3.2 and Figure 3.3 respectively. In these activities, the mean

has changed abruptly than the variance and covariance when the participant

transitioned from one activity to another such as sit to stand and stand to sit as

shown in Figure 3.2 and Figure 3.3 respectively.

Figure 3.2: Sit to Stand (Zhang et al., 2011)
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Figure 3.3: Stand to Sit (Zhang et al., 2011)

However, for the stand - walk corridor- stand activity, the mean, variance and

covariance have changed suddenly when the participant transitioned from stand

to walk and then stand as shown in Figure 3.4. Likewise, for the Stand-Walk Up

Stairs-Stand and Stand-Walk Downstairs-stand activities, the mean, variance

and covariance have also changed abruptly when the participant transitioned

from stand to walk Down Stairs or Upstairs and then stand as shown in Figure

3.5 and Figure 3.6 respectively.

Figure 3.4: Stand - Walk Corridor - Stand (Zhang et al., 2011)
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Figure 3.5: Stand - Walk Downstairs - Stand (Zhang et al., 2011)

Figure 3.6: Stand - Walk Upstairs - Stand (Zhang et al., 2011)

Moreover, change detection is used to find and specify change points in the

data streams, where each change point in a current distribution identifies the

occurrence of significant change. Both univariate and multivariate data can be

used for change detection analysis. However, in literature most of the existing

approaches have used univariate data (Bifet and Gavalda, 2007),(Jain and Wang,

2015),(Kifer et al., 2004),(Takeuchi and Yamanishi, 2006) for change detection

and very few approaches have been used for change detection in multivariate

data (Kuncheva and Faithfull, 2014), (Song et al., 2007). Also, these proposed

approaches did not consider multivariate data streams for change point detection.
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3.3 General Change Point Models

The analysis of time series data is based on number of variables which could be

the number of objects that can be analyzed as sample in an experiment. The

time series data can be univariate or multivariate. The univariate data is simple

to analyze because it involves one variable for analysis. However, multivariate

data is more complex to analyze as it involves more than one variable for analy-

sis. In multivariate data analysis, the difficulty increases when multivariate data

are analysed simultaneously. The multivariate data gives richer picture of the

data as compared to univariate data. In this thesis, we mainly focus on online

change point detection in multivariate data streams.

Suppose a time series data consists of data x1:n = (x1, x2, ..., xn).Each observation

can be identified at time t. The xi can be considered as univariate or can be

extended to multivariate data. A number of change points m can be assumed in

the data and the position for the change points is represented by τ1, τ2, ..., τn.The

order of the change points is considered as sequential so that τi < τj if and only

if i < j. The data is divided into (m + 1) segments for identifying m change

points, hence, the ith segment consists of data yτi−1
+ 1 : τi In each segment the

data is to be assumed as independently identically distributed (i.i.d) (Sharkey

and Killick, 2014). The sequence distribution can be represented as:

Xi =



F0 if i ≤ τ1

F1 if τ1 < i ≤ τ2

F2 if τ2 < i ≤ τ3

...

Fn if i > τn

Hence, in traditional parametric approaches, the information about assumption

of underlying distributional form Fi is required before and after the changepoint

which is a limitation of such approaches. However, an alternative technique is
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required which do not require such assumptions about underlying distribution

about data because most of the real-world problems and processes do not have

explicit and well-defined behaviour (Hawkins and Deng, 2010). The imprecise

assumptions about the distributional form of data can greatly affect the rate of

false positive specifically in sequential change detection (Ross and Adams, 2012).

Therefore, change detection approaches with the distribution free characteristics

need to be develop that can provide high performance. In addition, change

detection methods can be used online to detect and identify change point in

online settings as soon as the data becomes available.

3.3.1 The Online Univariate Change Detection Algorithm

The online univariate algorithm for change point detection is presented by (Jain

and Wang, 2015). In univariate analysis, the data has one variable which do not

describe any relationship and its purpose is to represent, summarize and find

patterns in the data. Unlike other algorithms such as cumulative sum control

chart (CUSUM) and generalized likelihood ratio (GLR), this algorithm does not

required knowledge about the underlying distribution before and after the change

point. The change detection algorithms are classified into two categories namely,

that of detecting changes in dependent and independent random sequences. The

independent random sequences with distributions parameterized by scalar pa-

rameters while dependent sequences characterized by a multi-dimensional pa-

rameter vector (Basseville et al., 1993).

The change detection problem in second category (independent random sequence)

is more complicated as compared to first category (dependent random sequence).

In order to make dependent random sequence to independent one, a systematic

approach is used to detect change in a dependent random sequence and per-

form a “whitening” transform and inverse "whitening" transform). The original

whitening transform , together with the inverse transform T−1 produce an iden-

tity mapping as shown in Figure 3.7. The purpose of transformation is “peeling

away” the dependency induced by the dependency models to reveal the “driving

force” behind the system change (Jain and Wang, 2015). Further, the driving
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force can be treated as an independent random process, which implies that the

change-detection algorithm in the first category are again applicable.

Specifically, the proposed algorithm is implemented for change detection in uni-

variate independent random sequences. The algorithm works on two steps: hy-

pothesis and verification. In the first step, the index of the most likely changeover

point inside the processing window is calculated. In the second step, the hypoth-

esis is verified as to whether the change is correct (change occurs) or incorrect

(no change).

Figure 3.7: Unified framework for change detection problem in both
independent and dependent random processes (Jain and Wang, 2015)

The mathematical formulation for change detection in an independent random

sequence is described by (Jain and Wang, 2015).

Consider a data stream X1, X2, ..., Xn of length n. The data stream consists of

random variables and can be formed in two distributions such as X1, X2, ..., Xk−1

assumed to be I.I.D having distribution D1 and Xk, Xk+1, ..., Xn assumed to be

I.I.D with distribution D2.The changeover point such as k is unknown and could

occur anywhere between 1 and n.

The algorithm is implemented to detect change in online applications in which

the data is continuously streamed from source to receiver. Therefore, a sliding

window is used to analyse the data stream for change detection. The change point

can occurs within the window to apply over a data stream. A non-overlapping

window over the data stream is applied over a successive group of n data items.
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Hence, the algorithm does not have enough information about an underlying

distribution, therefore, certain statistics of the input data (data stream) are cal-

culated to find the change points in the data. The algorithm operates by sliding

an analysis window of length n over the data stream, Xi, i = 1, ...n and examines

if the changeover point occurs within the window. To simplify the notion, the

n data items within the analysis window X1, ..., Xn regardless of their true posi-

tions in the stream. The algorithm operates on a slightly longer data stream

X1−m, ..., X0, X1, ..., Xn, Xn+1, ..., Xn+m , or the processing window is padded

with m extra data items at each end (X1−m, ..., X0, and Xn+1, ..., Xn+m).

This padding is necessary to ascertain with accuracy the occurrence of the

changeover point from index 1 up to index n. The statistics is denoted by f .

Then for an index l, 1 < l ≤ n within a processing window, the following four

functions of l (the means and variances statistics before and after component

distributions, separated at l) are calculated using Equation 3.1 and 3.2.

f 1(l) =

∑l−1
i=1−m f(Xi)

n1

S2
f1

(l) =

∑l−1
i=1−m(f(Xi)− f 1)2

n1 − 1

(3.1)

and

f 2(l) =

∑n+m
i=l f(Xi)

n2

S2
f2

(l) =

∑n+m
i=l (f(Xi)− f 2)2

n2 − 1

(3.2)

where n1 = m+ l−1 , n2 = n+m− l and n1 +n2 = n+2m. Moreover, If the win-

dow stream contains two distributions, intuitively, each individual distribution

should be homogenous in f while the two distributions should be distinct in f .

Furthermore, if the above procedure identifies e , 1 < e ≤ n, as the changeover

point, by calculating the mean and variance in Equation 3.1 and 3.2 respectively,

of the sampling distribution for f(Xi) in the range of 1 −m ≤ i < e (denoted

as f 1(e) and S2
f1

(e)) and e ≤ i ≤ n+m (denoted as f 2(e) and S2
f2

(e)). The null

hypothesis is that no changeover has occurred within the window (f 1(e) = f 2(e)).
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Figure 3.8: The pseudo-code for online univariate algorithm
(Jain and Wang, 2015)
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The hypothesis validation step is used to identify whether change occurs or not

at specific index e. Hence, a t statistic is calculated using Equation 3.3 to reject

the null hypothesis or accept that a change point occurs in the data.

t =
f 1(e)− f 2(e)

s
(3.3)

where s is the estimated standard error of the difference between the means,

which is 2.

s =

√
2MSE

nh
MSE =

n1S
2
f1

(e) + n2S
2
f2

(e)

n+ 2m− 2
, nh =

2
1
n1

+ 1
n2

(3.4)

MSE is the mean-squared-error, nh is the harmonic mean of the two sample sizes,

and n + 2m2 is the degrees of freedom (DOF) (Welkowitz et al., 2011) (Triola,

2006). The hypothesis generation and verification steps are explained for an

online univariate algorithm is shown in Figure 3.8.

3.3.2 Exponentially Weighted Moving Average (EWMA)

Control Chart

The Exponentially Weighted Moving Average (EWMA) was introduced by (Lowry

et al., 1992) for detecting shifts in the process. The EWMA is a statistic for

monitoring the process that averages the input data in such a way that give less

weight to the historical data and more weight to current data.

As the EWMA considered present and past information of the input data and

therefor more efficient and fast in detecting small shift in the data (Montgomery,

2009)

In EWMA, the decision depends on the EWMA statistic, which is an exponen-

tially weighted average of all prior data, including the most recent measurement

(Lucas and Saccucci, 1990). The Univariate EWMA statistics can be defined
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using Equation 3.4.

Zi = λXi + (1− λ)Zi−1 i = 1, 2, 3, ..., n (3.5)

where Zi is the ith EWMA vector, λ is the value between 0 < λ ≤ 1 that

weights the current and historical data and Xi is the ith input observation vec-

tor, i = 1, 2, 3, ..., n.

However, the extension of EWMA is Multivariate EWMA (MEWMA) which is

used to simultaneously monitor two or more related process of the input obser-

vation. The following section give detail explanation of MEWMA.

3.3.2.1 Multivariate Exponentially Weighted Moving Average (MEWMA)

change point detection algorithm

The Multivariate Exponentially Weighted Moving Average (MEWMA) is a sta-

tistical control method to monitor simultaneously two or more correlated vari-

ables and also provide sensitive detection of small and moderate shifts in time

series data. The MEWMA statistic incorporates information of all prior data

including historical and current observation with a user-defined weighted factor

(Khoo, 2004)(Pan and Jarrett, 2014). Moreover, MEWMA can be used to detect

shift of any size in the process. MEWMA has achieved better performance to

detect small and moderate changes than other multivariate control charts like

the T-Square and Shewhart control chart (Bersimis et al., 2007). MEWMA can

be defined using the following Equation 3.5.

Zi = ∧Xi + (1−∧)Zi−1 i = 1, 2, 3, ..., n (3.6)

where Zi is the ith MEWMA vector, ∧ is the diagonal matrix with elements

λi which weight the current and historical data for i = 1, ..., p where p is the

number of dimensions and 0 < λi ≤ 1, and Xi is the ith input observation vector,
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i = 1, 2, 3, ..., n. The out-of-control statistics is defined in Equation 3.6.

T2
i = Z

′

iΣ
−1
i Zi < h (3.7)

where Σ is the variance covariance matrix of Zi and h(> 0), chosen to achieve

a specified in-control value. Multivariate analysis is used to measure more than

one characteristic of a system and also evaluate the relationship among these

characteristics. In general the λ value lies between 0 and 1,but, the standard

value used in literature for MEWMA algorithm is λ = 0.3 (Lucas and Saccucci,

1990).

In multivariate analysis, the data points X1, ...,Xn is a subsequence of a data

stream where n is the length of a data stream. Each data point Xi is a vector

of n sensor observations. The data points in the data stream may be from

various distributions, for example, X1,X2,X3, ...,Xi−1 and Xi,Xi+1, ...,Xn can

be from distributions D1 and D2 respectively. The aim of the algorithm is to

determine and classify the position of change points i in the data stream. In the

first step, the MEWMA algorithm calculates the exponentially weighted moving

average of the multivariate input observations to find the change points. Hence,

the sliding window version of the algorithm is used to analyze the data points

sequentially and incremented by 1 each time to process all data within a window.

In each window, the index variable, i slides subsequently to determine the global

statistics for each index i, 1 < i ≤ n. Each input vector of multivariate data is

used to find the MEWMA vector represented by Zi. In addition, the variance

and covariance matrix of Zi is calculated recursively and represented by Σi, Once

the T-squared statistic is calculated as shown in Equation (3.7), the significance

value h is used to identify the confidence of the entire window. If the T-squared

value is greater than h, then xi will be labelled as a change point within a data

stream. The accelerometer data analysis identifies the actual values of specific

change points which may represent an increase or decrease in the data. Therefore,

the sliding window algorithm detects a number of adjacent change points which
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highlights the significant change point in the data. Adjacent change points can

be classified by defining a new parameter k, which indicates sequential adjacent

change points and is considered as an indicative point of the same event and

therefore would be merged.

3.3.3 Sliding Window for change detection

The x, y and z axis of an accelerometer signal is divided into multiple windows

of different sizes (1s, 1.5s, 2s, 2.5s, 3s.3.5s, 4s). The sliding window algorithm as

discussed in section 2.4.1 is applied on each window. In the next step, each

window is transformed into a feature vector. The feature vector consists of time

domain features which were calculated from each window data. The extracted

features were obtained by processing the x, y and z axis of an accelerometer

data. The time domain statistical features such as mean, variance and covari-

ance were calculated to form a feature vector. The multiple window division of

an accelerometer signal and feature extraction were shown in Figure 3.9.

Once the T-statistics for each algorithm is calculated discussed earlier in section

3.3.1 and 3.3.2 then the number of possible values for the signicance values (0.005,

0.01,0.025,0.05) are used to identify the confidence of each window. Hence, if

the T-statistic value is greater than the significance value then the xi will be

labelled as change point within the window. The process is continued till the

end of time series data. The total number of windows of different sizes (1s,

1.5s, 2s, 2.5s, 3s. 3.5s, 4s) are shown in Figure 3.10. The number of window is

inversely proportional to window sizes because as the window size increase the

total number of window decreases as shown in Figure 3.10.

3.4 Real Dataset and Experimental Setup

The MEWMA approach was evaluated for change point detection on a real

dataset of accelerometer data. The dataset used here were collected by (Zhang

et al., 2011) which consists of two participants wearing the shimmer wireless
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Figure 3.10: Window Sizes Vs Total Number of Window

sensing platform (Kuris and Dishongh, 2006).The shimmer sensor was placed

in the middle of the participant’s left pectoral and at the mid-point between

the thigh and knee on the anterior of the participant’s right leg. The sensor

placement positions on the subject’s body enabled anterior-posterior and lateral

movements to be captured effectively (Zhang et al., 2011). The five different

activities were performed by two participants involving a set of activities con-

sisting of Sit to Stand, Stand to Sit, Stand-Walk Corridor-Stand, Stand-Walk

Upstairs-Stand and Stand-Walk Downstairs-Stand. For the static activities such

as sit and stand, the participants remained in each state for approximately 30

seconds and then transitioned to other static activities such as sit to stand and

stand to sit (Zhang et al., 2011). The dynamic activities were measured by ac-

celerometer data where the subject stood for approximately 30 seconds, followed

by an activity performed for 30 seconds and then transition to standing. The

data was captured from each participant with sample frequency of 52 Hz. The

example of Stand to Sit activity and Stand-Walk Downstairs-Stand activity from
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the dataset can be shown in Figure 3.11 and 3.12. In the data collection, the

activity execution of accelerometer data was wirelessly streamed to a receiving

computer via the IEEE 802.15.1 Bluetooth communications protocol.

Figure 3.11: Stand to Sit

Figure 3.12: Stand - Walk Downstairs - Stand

3.5 Results and Discussion

In this section,we have performed experiments on a real dataset for univariate

and multivariate data and also provide detailed explanation of results comparing

the classification performance of the standard MEWMA approach and univari-

ate approach proposed in (Jain and Wang, 2015) for change point detection. For

evaluation of univariate data, the magnitude of acceleration is calculated from
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the x, y and z axes of the accelerometer data and used as an input to the univari-

ate algorithm. Likewise, for multivariate data analysis, the x, y and z axes of the

captured data is used as input to the standard MEWMA approach for change

point detection in the data stream. The standard MEWMA (λ = 0.3) uses the λ

parameter which weights the current and historical data. However, in our experi-

ments for both algorithms the different window sizes 1s, 1.5s, 2s, 2.5s, 3s.3.5s, 4s)

and signicance values (0.005, 0.01, 0.025, 0.05) are varied in an effort to nd better

performance and accurate change point.The reported window sizes in Table 3.2

and Table 3.3 achieved the high metric measures such as accuracy, precision, G-

means and F-measure. All the transitions were occurred in the dataset which we

have used for our experiments.The start and end points of the user data is also

manually labelled for the purpose of quantitative evaluation of both algorithms.

Moreover, for results evaluation, we used different metrics such as accuracy, pre-

cision, G- means and F-measure as discussed and explained in section 3.6. In our

experiments, these evaluation metrics are used to evaluate change point detec-

tion in activity monitoring for the univariate and standard MEWMA approach.

The analysis of our experiments for two activities i.e. stand still- walk corridor-

stand still and stand still- walk downstairs- stand still for change detection using

univariate and standard MEWMA approach are shown in Figure 3.13(a & b)

and 3.14(a & b) respectively.

In our experiments, when determining ture positives a quarter second buffer was

included at either side of the manually labelled change point to accommodate

subjectivity errors inherent in manual labelling. Thus, a detected change point

was considered true if its index in the data stream i, i ε z − f/4, ..., z + f/4

where z is the index in the data stream of the manually labelled change point

and f is the sampling frequency in Hz. The target of our algorithm is to detect

the primary transitions in high level activities such as stand still – downstairs

–stand still and stand still– walk corridor- stand still, as presented in Figure 3.13

and 3.14 respectively. The positive and negative detection cases were defined as,

the true positive (TP) which is the correctly identified change point and true

negative (TN) which are the non-transitional points which are not labelled as
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(a) Univariate Change Detection for Activity ‘Stand still-Walk Corridor-Stand Still’
Proposed by Jian and Wang (Jain and Wang, 2015)

(b) Presented Multivariate EWMA change detection with standard value λ = 0.3 for
Activity ‘Stand still- Walk Corridor-Stand Still’

Figure 3.13: (a and b): Example of Univariate and Multivariate EWMA
change detection using sliding window for activity ‘Stand still- Walk

Corridor-Stand Still’. The window size was 2s and significance value 0.005.
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change. The false positive (FP) is the non-transitional point which the algorithm

highlights as a change and false negative (FN) occurs when the algorithm is un-

able to detect changes in the user’s activity. The univariate approach identified

a maximum number of false positives in the real dataset because of the complex

and dynamic nature of the accelerometry data. In Figure 3.13 and 3.14, the

univariate and multivariate approach is applied to detect the primary change

points in the real dataset. The primary change points are the transitions be-

tween high level activities, for example ‘stand still’- walk up stairs’- stand still.

However, the non-primary change points are detected hugely using univariate ap-

proach as presented in Figure 3.13 (a) and 3.14 (a) than the standard MEWMA

approach presented in Figure 3.13 (b) and 3.14 (b). The non-primary change

points are considered as false positives which can greatly effect to minimize the

accuracy, precision, G-Means and F measure. The results of both approaches

when applied to a real dataset (discussed earlier in section 3.4) for five different

activities {Sit to Stand, Stand to Sit, Stand-Walk Corridor- Stand, Stand-Walk

Downstairs-Stand and Stand-Walk Upstairs-Stand } are presented in Table 3.2

and 3.3. In our experiments, we used online Univariate algorithm and standard

MEWMA algorithm for change detection in the data. Table 3.2 and Table 3.3,

presents results for each activity using the univariate approach presented in (Jain

and Wang, 2015) and standard MEWMA approach (λ = 0.3) for change point

detection. For both approaches, the experimental results for each activity with

corresponding significance values 0.005, 0.01,0.025,0.05 and window sizes 1s, 1.5s,

2s, 2.5s, 3s. 3.5s, 4s are presented.

Table 3.2: Univariate change detection for 5 different activities

Activity Significance value Win Size Accuracy % Precision % Sensitivity % G-means % F-Measure %

Sit to Stand

0.005

2s 98.00 28 32.30 50 30

Stand to Sit 3s 98.20 30 42 50 35

Stand to Walk Corridor 2.5s 97.50 25 25 40 25

Stand to Walk Down Stairs 2s 98.80 35 26.25 50 30

Stand to Walk up Stairs 2s 97.00 25 25 40 25
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(a) Univariate Change Detection for Activity ‘Stand still-Walk Down Stairs-Stand
Still’ Proposed by Jian and Wang (Jain and Wang, 2015)

(b) Presented Multivariate EWMA change detection with standard value λ = 0.3 for
Activity ‘Stand still- Walk Down Stairs-Stand Still’

Figure 3.14: (a and b): Example of Univariate and Multivariate EWMA
change detection using sliding window for activity ‘Stand still- Walk Down
Stairs-Stand Still’. The window size was 2s and significance value 0.005.
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Table 3.3: Multivariate EWMA Standard Values for 5 different activities

Activity Significance value Win Size λ Accuracy % Precision % Sensitivity % G-means % F-Measure %

Sit to Stand

0.005

2s

0.3

99.50 40 40 70 40

Stand to Sit 3s 99.60 40 66.66 70 50

Stand to Walk Corridor 2.5s 99.20 40 40 70 40

Stand to Walk Down Stairs 2s 98.50 50 39.92 70 44.4

Stand to Walk up Stairs 2s 97.50 30 60 70 40

3.6 Evaluation

Different performance measures such as accuracy, precision, G- means and F-

measure were used for evaluation of the experimental results as follows.

3.6.1 Accuracy

The accuracy metric is most commonly used to evaluate the performance of an

algorithm in terms of how close a measured value is to the actual (true) value.

The accuracy can be measure as the ratio of correctly classified data points to

the total number of data points. The accuracy can be calculated using Equation

3.7.

Accuracy =
TP+TN

TP+TN+FP+FN
(3.8)

High accuracy is achieved for all activities using the univariate approach rang-

ing from 97% to 98.80%. Similarly, for Standard MEWMA, high accuracy was

achieved ranging from 97.50% to 99.60%. The reason for getting high accuracy

for both approaches is because of disproportionality of high numbers of true

negatives in the data. However, standard MEWMA approach obtained higher

accuracy for all activities in the dataset than the Univariate approach for the

same significance value and window sizes as shown in Table 3.2 and 3.3 respec-

tively.

Thus, for evaluation of both algorithms, we used other metric measures such as

precision, G-means and F-measure.
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3.6.2 Precision

The precision metric is used to find how close the measured values are to each

other. Precision can be measured as the ratio of true positive data points to

the total classified positive data points. The precision is calculated to avoid

unintuitive requests (not a change but algorithm detects it as change) because

unintuitive requests may degrade user experience. The precision for univariate

and standard MEWMA is calculated using Equation 3.8.

Precision =
TP

TP+FP
(3.9)

In Table 3.2 and Table 3.3, the sliding window version of the algorithm with the

increment of one data point is presented for which the precision is calculated

for the detected change points. The proposed standard MEWMA algorithm

consistently attained higher precision for all activities in the dataset than the

univariate approach as shown in Table 3.3. The maximum precision is achieved

for the Univariate approach in the range of 30% to 50% with 0.005 significance

value and window sizes 2s to 3s for different activities. However, for standard

MEWMA, higher precision is achieved than univariate ranging from 30% to

50% for the same significance value and window sizes. The standard MEWMA

improved precision 12% on average compare with the univariate approach for

different activities with same significance value and window sizes as shown in

Table 3.2 and Table 3.3 respectively.

The class imbalance problem in the dataset is caused by the high sampling fre-

quency in relation to the number of TPs. This highlights the skewed distribution

of classes within the dataset and identifies that the minority class is the class

of interest (Galar et al., 2012). In our dataset, we have only one true positive

(TP) (which represents a correctly identified change point) and a high number

of true negatives (TN) (the non-transitional points which are not labelled as

change). We used the precision which is the ratio of true positive data points to

the total classified positive data points as presented in Equation. 3.8. Therefore,
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the one or two FP detections reduced the precision to 50% and 30% due to the

imbalanced class problem in our real dataset.

3.6.3 Sensitivity and Specificity

The sensitivity (also known as Recall) is referred to as the true positive rate (TP)

and identifies the proportion of true positive class of interest (the positive class)

that is recognized correctly. The sensitivity is calculated as the true positive

divided by the total sum of true positive and false negative. Likewise, the speci-

ficity is the inverse of sensitivity and referred to as the true negative rate (TN).

The specificity is used to identify the class of interest (the negative class) and

calculated as the true negative divided by the total sum of true negative and false

positive. The sensitivity and specificity is calculated using Equation 3.9 and 3.10.

Sensitivity =
TP

TP+FN
(3.10)

Specificity =
TN

TN+FP
(3.11)

3.6.4 G-means

The G-means performance metric is the combination of sensitivity and specificity

and defined as the ratio of positive accuracy (sensitivity) and the ratio of neg-

ative accuracy (specificity). Thus, the G-means provides activity class-sensitive

measure of the detection performance and can be calculated using Equation 3.11.

G-means =

√
TP

TP + FN
× TN

TN + FP
=
√
sensitivity × specificity (3.12)

The maximum G-means achieved for the univariate approach ranges from 40%

to 50% for different activities with significance value 0.005 and window sizes 2s
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to 3s. But, the standard MEWMA achieved highest G-means about 70% for all

activities using same significance and window sizes as shown in Table 3.2 and

Table 3.3. Hence, the standard MEWMA improved on average 24% more than

the univariate approach for the same significance value and window sizes.

3.6.5 F-measure

The F-measure is used to combine precision and recall and used as measure to

find the overall effectiveness of each activity (Cook and Krishnan, 2015). The

F-measure can be calculated using the Equation 3.12.

F-measure =
2× Recall× Precision
(Recall + Precision)

(3.13)

As the F-measure balances the recall and precision.For Standard MEMWA ap-

proach, the best F-measure is obtained between 40% to 50% for different activ-

ities in dataset while 25% to 35% is achieved for univariate approach. Hence,

the standard MEWMA improved F-measure 13% on average more than the uni-

variate approach. The analysis of overall results shows that the proposed stan-

dard MEWMA provides better accuracy and also improved on the performance

as measured by the other metric measures such as precision, G-means and F-

measure by more than 12%, 24% and 13% respectively compare with Univariate

approach.

3.7 Parameter Exploration for online change de-

tection in activity monitoring

In this section, we analyze and explore our experiments, using the standard

MEWMA approach for change point detection discussed in section 3.3.2.1, eval-

uating the different parameters that can be tuned and explored such as λ the

parameter which weights current and historical data, window size and signifi-
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cance values with the aim to achieve better performance and accurate change

point detection. This section initially summarizes the automatic detection of

change points in user activities and then explores the optimal parameter set by

evaluating different metric measures discussed earlier in section 3.6 to classify the

change point detection in activity monitoring for the MEWMA approach when

considering the tuning of its parameters. The tuned parameters help to identify

optimal values for each activity by achieving better results for different metrics.

The same real dataset and experimental setup as discussed in section 3.4 is

used for our experiments. This section presents the details of the evaluation of

the feasibility and performance of the proposed MEWMA on a real dataset for

the standard and tuned parameters of MEWMA. For evaluation, the standard

MEWMA for which results are presented in Table 3.3 is used as a benchmark.

However, we search for optimal parameters by using different values of λ ranging

from 0.1 to 1. λ is the parameter which weights current and historical data

and window size (1s, 1.5s, 2s, 2.5s, 3s, 3.5s, 4s).In addition significance values

(0.005, 0.01, 0.025, 0.05) are varied in an effort to find better performance and

accurate change point detection. The metrics of precision, G-means and F-

measure discussed in section 3.6 were used to evaluate change point detection in

activity monitoring for the tuned parameters of the MEWMA approach.

The tuned parameters help to identify optimal values for each activity by achiev-

ing better results for different metrics. In our experiments, we used the standard

MEWMA and tuned (optimal) values for change point detection as presented in

Figure 3.15 and Figure 3.16, respectively. The target of our algorithm is to detect

the primary transitions in high level activities such as stand still – downstairs

–stand still as presented in Figure 3. 16.

The standard MEWMA identified a large number of false positives in the real

data because of the dynamic and complex nature of the accelerometery data.

Figure 3.15 and Figure 3.16 used the standard and optimal MEWMA respectively

to detect the primary change points in real data. Nevertheless, the non-primary
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Standard MEWMA

Figure 3.15: Example of sliding window change detection results for the
activity ’stand still – walk downstairs - stand still’. The window size was 2s

second with significance value 0.005 and λ = 0.3.

Optimal MEWMA

Figure 3.16: Example of sliding window change detection results for the
activity ’stand still – walk downstairs - stand still’ on real data. The window

size was 1.5s second with significance value 0.005 and λ = 0.7.
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change points were detected by the standard MEWMA approach as presented in

Table 3.3 whereas in Figure 3.16 only the primary change points were detected

using MEWMA tuned with optimal values. A number of false positives were

detected in the real data using the standard MEWMA approach as presented in

Figure. 3.15 which can minimize the accuracy, precision and F measure presented

in Table 3.3.

3.8 Experimental setup and Results for change

detection of each user activity

The experiments were performed on real data set for five different activities such

as Sit to Stand, Stand -Walk Corridor-Stand, Stand-Walk Downstairs-Stand and

Stand-Walk Up Stairs-Stand. The different parameters of MEWMA such as

λ the parameter which weights current and historical data, window size and

signicance values were tuned with the aim to achieve better performance and

accurate change point detection. The following experimental results represents

the different values of λ ranging from 0.1 to 1 for each activity with corresponding

significance values 0.005, 0.01, 0.025, 0.05 and window sizes 1s, 1.5s, 2s, 2.5s, 3s,

3.5s and 4s. Also, the different metrics such as accuracy, precision, G-means

and F-measure discussed in section 3.6 were used to evaluate the change point

detection for tuned parameters which help to identify optimal values for each

activity by achieving better results for different metrics. The following section

will discuss the experimental results of MEWMA for optimal parameter selection

when considering the tuning of its parameter for each activity.

3.8.1 Sit to Stand

The Sit to Stand activity results for accuracy were relatively high about 99.9% for

optimal parameters and 99.5% for Standard MEWMA as presented in Table 3.3

and Table 3.4 respectively. The accuracy is high because of considering each class

equally important in the dataset even if exist the class imbalance problem in the
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dataset. The class imbalance problem happens when the total number of a class

data (positive) is less than then total number of other classes of data (negative).

This highlights the skewed distribution of classes within the dataset and identifies

that the minority class is the class of interest (Galar et al., 2012). The accurate

change point detection for sit to stand activity using optimal parameter selection

can be shown in Figure 3.17.

The maximum precision, G-Means and F-measure for standard MEWMA were

achieved is about 40%, 70% and 40% respectively with 0.005 significance value

and window sizes 2s as presented in Table 3.3. However, for optimal parameters,

the approach attained maximum values are about 66.7% ,100% and 80% with

λ value 0.5, significance value 0.01 and window size 0.5s as presented in Table

3.4. Also, the higher precision, G-means and F-measure were attained due to

the minimum number of false positive detections using optimal parameters than

the Standard MEWMA.

Figure 3.17: Sit to Stand
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Table 3.4: MEWMA optimal parameter for Sit to Stand activity

Activity Significance value Win Size λ Accuracy % Precision % G-means % F-Measure %
Si
t
to

St
an

d
0.005 2s 0.1 97.50 20 75 30

0.005 0.5s 0.2 99.60 35 70 35

0.005 0.5s 0.4 99.50 30 70 40

0.005 0.5s 0.5 99.30 50 70 50

0.005 0.5s 0.6 99.20 50 90 66.70

0.01 0.5s 0.7 99.90 66.70 100 80

0.005 2.5s 0.8 99.80 50 85 57

0.01 0.5s 0.9 99.70 50 90 65

3.8.2 Stand to Sit

The Stand to Sit activity results for accuracy were about 99.9% for optimal

parameters and 99.60% for Standard MEWMA which is relatively higher than

the Standard MEWMA as presented in Table 3.3 and Table 3.5 respectively.

For Stand to Sit activity, the maximum precision, G-Means and F-measure for

standard MEWMA were achieved is about 40%, 70% and 50% respectively with

0.005 significance value and window sizes 3s as presented in Table 3.3. However,

for optimal parameters, the approach attained maximum values are about 50%

,100% and 66.7% with λ value 0.5, significance value 0.005 and window size

2.5s as presented in Table 3.5. The higher precision, G-means and F-measure

were achieved is about 10%,30% and 16.70% respectively than the standard

MEWMA. The accurate change point detection for sit to stand activity using

optimal parameter selection can be shown in Figure 3.18.

Table 3.5: MEWMA optimal parameter for Stand to Sit activity

Activity Significance value Win Size λ Accuracy % Precision % G-means % F-Measure %

St
an

d
to

Si
t

0.005 2.5s 0.1 99.30 30 80 44.40

0.01 2.5s 0.2 99.40 30 70 40

0.005 1.5s 0.4 99.60 50 75 40

0.005 2.5s 0.5 99.90 50 100 66.70

0.01 2.5s 0.6 99.40 40 85 57

0.01 2.5s 0.7 99.60 30 80 44.40

0.01 0.5s 0.8 99.50 40 75 40

0.005 1s 0.9 99.70 20 70 30
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Figure 3.18: Stand to Sit

3.8.3 Stand - Walk Corridor - Stand

The accurate change point detection for Stand to Walk Corridor activity using

optimal parameter selection can be shown in Figure 3.19. The stand to walk

Corridor is relatively complex activity than the sit to stand and stand to sit

activities. The complexity is because of consisting dynamic activity (walking)

than the stationary activity (sit or stand). The Stand- Walk Corridor-Stand

activity results for accuracy were about 99.9% for optimal parameters and 99.20%

for Standard MEWMA which is relatively higher than the Standard MEWMA

as presented in Table 3.3 and Table 3.6 respectively. The maximum precision,

G-Means and F-measure for optimal parameters were achieved is about 50%,

70% and 50% respectively with λ value 0.5, significance value 0.005 and window

size 2s as presented in Table 3.6, whereas, for standard MEWMA approach the

maximum values attained were about 40% ,70% and 40%, significance value 0.005

and window size 2.5s as presented in Table 3.3. The MEWMA with optimal

parameter selection has achieved higher precision, G-means and F-measure is

about 25%,30% and 25% respectively than the standard MEWMA.
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Figure 3.19: Stand WalkCorridor Stand

Table 3.6: MEWMA optimal parameter for Stand - WalkCorridor - Stand
activity

Activity Significance value Win Size λ Accuracy % Precision % G-means % F-Measure %

St
an

d
-
W
al
k
C
or
ri
do

r
-
St
an

d 0.01 3s 0.1 99.20 10 65 20

0.005 2.5s 0.2 98.50 40 70 30

0.01 2.5s 0.4 99.10 30 66 40

0.005 2s 0.5 99.90 50 70 50

0.01 1.5s 0.6 98.80 40 68 40

0.01 2s 0.7 98.30 20 60 30

0.01 2.5s 0.8 99.10 30 68 40

0.01 1s 0.9 99.40 35 65 40

3.8.4 Stand - Walk Downstairs - Stand

Likewise, the walk corridor activity, the stand to walk downstairs activity is

also complex because of non-stationary (walk downstairs) activity involved. The

accurate change point detection for Stand-Walk Downstairs-Stand activity using

optimal parameter selection can be shown in Figure 3.20. The Stand- Walk

Downstairs-Stand activity results for accuracy were about 99.9% for optimal

parameters and 98.50% for Standard MEWMA which is relatively higher than

the Standard MEWMA as presented in Table 3.3 and Table 3.7 respectively. For

Stand-Walk Downstairs-Stand activity, the maximum precision, G-Means and
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F-measure for standard MEWMA were achieved is about 50%, 70% and 44.40%

respectively with 0.005 significance value and window sizes 2s as presented in

Table 3.3. However, for optimal parameters, the approach attained maximum

values are about 50% ,90% and 66.7% with λ value 0.7, significance value 0.01

and window size 1.5s as presented in Table 3.7.

Figure 3.20: Stand - Walk Down Stairs - Stand

Table 3.7: MEWMA optimal parameter for Stand - Walk Down Stairs - Stand
activity

Activity Significance value Win Size λ Accuracy % Precision % G-means % F-Measure %

St
an

d-
W
al
k
D
ow

n
St
ai
rs
-
St
an

d 0.005 2.5s 0.1 97.70 30 65 40

0.01 2.5s 0.2 98.20 40 70 50

0.01 1.5s 0.4 98.50 20 75 30

0.005 2s 0.5 99.20 30 80 40

0.025 1.5s 06 99.30 40 70 44.40

0.01 1.5s 0.7 99.90 50 90 66.70

0.01 1s 0.8 99.50 20 90 40

0.005 1s 0.9 99 30 85 50

3.8.5 Stand - Walk Upstairs - Stand

The Stand-Walk Upstairs-Stand activity results for accuracy were about 99.9%

for optimal parameters and 97.50% for Standard MEWMA which is relatively
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higher than the Standard MEWMA as presented in Table 3.3 and Table 3.8

respectively. For Stand-Walk Upstairs-Stand activity, the maximum precision,

G-Means and F-measure for standard MEWMA were achieved is about 30%,

70% and 40% respectively with 0.005 significance value and window sizes 2s as

presented in Table 3.3. However, for optimal parameters, the approach attained

maximum values are about 50% ,70% and 50% with λ value 0.6, significance value

0.005 and window size 1.5s as presented in Table 3.8. The higher precision and

F-measure were achieved is about 20% and 10% respectively than the standard

MEWMA. The accurate change point detection for sit to stand activity using

optimal parameter selection can be shown in Figure 3.21.

Figure 3.21: Stand - Walk Up Stairs - Stand

73



Chapter 3

Table 3.8: MEWMA optimal parameter for Stand - Walk Up Stairs - Stand
activity

Activity Significance value Win Size λ Accuracy % Precision % G-means % F-Measure %
St
an

d-
W
al
k
U
p
St
ai
rs
-
St
an

d

0.005

2.5s 0.1 97.50 10 65 20

2.5s 0.2 98 30 60 44.40

1s 0.4 99 20 65 30

.5s 0.5 98.50 40 66 44.40

1.5s 0.6 99.90 50 70 50

2s 0.7 97.90 20 60 30

3s 0.8 99.50 30 65 40

1.5s 0.9 98.80 20 60 30

A limitation is that the parameter selection is dependent on the activity.Moreover,

the relationship between the x, y but not always z as the z-axis captures the for-

ward movement of the leg and the y-axis captures the upward and downward

motion. The x-axis captures horizontal movement of the user’s leg. Figures 3.3

to 3.6 demonstrates the accelerometer data for a typical user, for all three axes

of the five different activities. It is clear that standing and sitting (Figure 3.3)

do not exhibit periodic behaviour but do have distinctive patterns, based on

the relative magnitudes of the x, y, and z values, while the three other activities

(Figures 3.4-3.6), which involve repetitive motions, do exhibit periodic behaviour.

Note that for most activities the y values have the largest accelerations. This is

a consequence of Earth’s gravitational pull, which causes the accelerometer to

measure a value of 9.8 m/s2 in the direction of the Earth’s centre. For all activ-

ities except sitting this direction corresponds to the y axis (see Figure 3.3). The

periodic patterns for walking, Downstairs and Upstairs (Figure 3.4-3.6) can be

described in terms of the time between peaks and by the relative magnitudes of

the acceleration values. The plot for walking, shown in Figure 3.4, demonstrates

a series of high peaks for the y-axis, spaced out at approximately 1
4
second in-

tervals. The peaks for the z-axis acceleration data echo these peaks but with a

lower magnitude. The distance between the peaks of the z-axis and y-axis data

represent the time of one stride. The x-axis values (side to side) have an even

lower magnitude but nonetheless mimic the peaks associated with the other axes.

For descending stairs, one observes a series of small peaks for y-axis acceleration
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that take place every ∼ 1
4
second. Each small peak represents movement down

a single stair. The z-axis values show a similar trend with negative acceleration,

reflecting the regular movement down each stair. The x-axis data shows a series

of semi-regular small peaks, with acceleration vacillating again between positive

and negative values. For ascending stairs, there are a series of regular peaks

for the z-axis data and y-axis data as well; these are spaced approximately ∼ 3
4

seconds apart, reflecting the longer time it takes to climb up stairs.

3.9 Overall Results and Discussion

The optimal parameters of the MEWMA change point detection persistently

attained substantially higher precision, G-means and F-measure than standard

MEWMA. The results for accuracy were relatively high about 99.50% to 99.90%

for optimal parameters and 97.50% to 99.60% for standard MEWMA. The ac-

curacy is high because of considering each class equally important in the dataset

even if exist the class imbalance problem in the dataset. The maximum preci-

sion for standard MEWMA was achieved in the range of 30% to 50% with 0.005

significance value and window sizes 2s to 3s. For optimal parameters, the ap-

proach attained figures in the range of 50% to 66.70% with λ value (0.5 & 0.7),

significance value (0.01 & 0.005) and window sizes (0.5s to 2.5s). The higher

precision was attained due to the minimum number of false positive detections

using optimal parameters.

Moreover, the highest G-means achieved for the optimal parameters ranged from

70% to 100% with the same λ, window sizes and significance values discussed ear-

lier and a value of only 70% was attained for the standard MEWMA approach.

The best F-measure obtained was between 50% and 80% for optimal parameters

and 40% to 50% for the standard MEWMA approach.

The analysis of overall results suggests that optimal parameter selection provides

better accuracy than standard parameter values and precision, G-means and F-
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measure improved by more than 20% for each activity with optimal parameters

of MEWMA. The analysis of overall results suggests that optimal parameter se-

lection provides better accuracy than standard parameter values. Moreover, the

precision, G-means and F-measure were also improved by more than 20% for each

activity with optimal parameters of MEWMA. In our experiments, low weight

was assigned to historical data as compared to current data i.e. the changes

are quite sudden. The empirical results achieved higher precision, G-means and

F-measure because of the sudden transition occurred in the data for activities

such as sit to stand and stand to sit as presented in Figure 3.17 and Figure

3.18 respectively. Moreover, as we are more interested in current data than the

historical data and as λ is the relative weight between historical and current

data, however, in our application higher weight was assigned to the current data

than the historical data for accurate change detection and get better results as

presented in Table 3.4 and 3.5 respectively. Moreover, the empirical results were

relatively higher because the transitions are more gradual for activities such as

stand to walk, stand to walk Downstairs and stand to walk upstairs as presented

in Figure 3.19, Figure 3.20 and Figure 3.21 respectively.

Furthermore, as we were not sure about the proper window size selection and

probably similar point to first one about recent data being most important.

Hence, a number of possible values for the window sizes (1s, 1.5s, 2s, 2.5s, 3s, 4s),

which are used to analyze the data using a sliding window with an increment

of 1 data point to perform sequential analysis. The window sizes are used to

evaluate the sequence from inside the window. These window sizes are chosen to

combine some historical data with new data to balance the data and identify if the

change happens. Additionally, we should be quite forgiving with the significance

as fluctuation can occur at random, therefore, we consider a number of possible

values for the significance values h(0.05, 0.025, 0.01, 0.005), which are used to

identify the confidence of the entire window for accurate change detection.
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3.10 Chapter Summary

The multivariate exponentially weighted moving average (MEWMA) has been

used to automatically detect change points corresponding to different transitions

in user activity. The results evaluation shows that the standard MEWMA pro-

vides better accuracy and improved on the other metric measures such as preci-

sion, G-means and F-measure by more than 12%, 24% and 13% respectively than

Univariate approach by (Jain and Wang, 2015). Moreover, the different param-

eters of MEWMA were evaluated to select the optimal parameter set. The stan-

dard MEWMA and optimal parameters were used to analyse the performance

of MEWMA. The optimal parameters of MEWMA outperformed than standard

values on real world accelerometer data for accuracy, precision, G-means and

F-measure compared with the standard approach. Also, the MEWMA approach

achieved low computation costs and can run in the online scenario. A key part of

future work will be the automatic optimization of optimal parameter selection in

terms of λ, window size and significance value. The synthetic dataset will also be

used to determine the impact of parameter choices using MEWMA. Additionally,

other multivariate algorithms for change point detection will be used from the

state of the art to compare with MEWMA and analyse their performance.
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Automatic Parameter Optimization for On-
line Change Point Detection in Activity Mon-
itoring Using Genetic Algorithm (GA)

4.1 Introduction

Chapter 3 has discussed that MEWMA is used with standard and tuned param-

eters such as λ, which weights the current versus historical data, window size and

significance values with the aim of change-point detection. Also, the MEWMA

approach tunes the different parameters to achieve better performance and ac-

curate change-point detection. However, the limitation was that each parameter

set needs to be evaluated manually to find the optimal values, which makes the

approach computationally intense. However, chapter 4 provides detailed infor-

mation about employing a genetic algorithm to automatically identify an optimal

parameter set, using a fitness function for MEWMA, parameters such as the for-

getting parameter λ, the window size, and significance value for each activity

so as to maximize the Fitness Function. A genetic algorithm (GA) is used to

mimic the process of evolution by taking a population of strings, which encodes

possible solutions, and combining them based on the fitness function to produce

solutions that are high performing. The fitness function is the core component

of the GA. It evaluates each individual parameter set in the population to find

the solution with an optimal fitness value. Moreover, within this chapter, the

optimal parameter selection facilitates an algorithm to detect accurate change
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points and minimize false alarms. The performance of a real dataset and a syn-

thetic dataset were evaluated based on data from an accelerometer collected for

a set of different activities.

4.2 Genetic Algorithm

Arguably the most significant branch of computational intelligence is evolution-

ary algorithms (EAs), which have much potential to be used in many application

areas. The basic concepts of EAs are inspired by observing the biological struc-

ture of nature; for instance, the principles of selection and genetic changes could

be used to find the optimal solution for a given optimization problem (Holzinger

et al., 2014). Moreover, the robust and adaptive characteristics of EAs are per-

forming a global search instead of a local search to find the optimal solution in

the search space.

The GA is a machine learning method which is inspired by the genetic and

selection structure of nature (Goldberg and Holland, 1988). The GA is used to

solve the optimization and search problems. Also, the predefined fitness function

is optimized by performing a randomized and parallel search to find the optimal

solution (McCall, 2005).

4.2.1 Optimization

Optimization is the process which is used to find the minimum or maximum value

of a function. It modifies input characteristics of a system using a mathematical

process to find the minimum or maximum output. This process can be used in

various domains such as economics, chemistry, production, physics or any other

measure. The optimization of a function can be either minimization or maxi-

mization and denoted by f . Hence, the maximization function f is equivalent

to the inverse of the minimization function e.g. −f (Van Laerhoven and Schiele,

2009).

The minimization and maximization function can be defined using Equation 4.1
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and Equation 4.2 respectively.

Given f : <n → <

Find X̂ ∈ <n such that f(X̂) ≤ f(X), ∀X ∈ <n
(4.1)

Given f : <n → <

Find X̂ ∈ <n such that f(X̂) ≥ f(X), ∀X ∈ <n
(4.2)

The function f is called objective function that maps the function space with the

search space. Moreover, the <n of f is denoted as search space or parameter space

(Kennedy, 2006) and each element in <n signifies a solution while X̂ represents

an optimal solution in the search space. Moreover, the number of dimensions and

parameters involved in search space is denoted by n. In this study, the objective

function or fitness function is maximized to find the optimal solution to a system.

The GA starts with a random sample of variable sets and repeatedly modifies

a population of individual solutions. Various criteria can be used for the selec-

tion process to obtain the desired solution through the evaluation of individual

solutions. The best individual solution is selected as an input for the next gen-

eration. The GA is used for solving optimization problems based on natural

selection, which is the process used in driving biological evolution (Malhotra

et al., 2011). The optimization modifies input characteristics of a system using

a mathematical process to find the minimum or maximum output. The maxi-

mization of the fitness function in the GA is used to find the optimal solution to

a system.

Moreover, the population of “individuals” are used by GA, where each “individ-

ual” signifies a possible solution to a specific problem. The fitness score is as-

signed to each “individual” according to the problem in order to generate a good

solution. Within the population, the best “individuals” are selected as a high-fit
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and are given more chances to reproduce by “cross breeding” with other indi-

viduals. Hence, new individuals are generated as “offspring” which take features

obtained from each “parent”. Likewise, the least-fit individual in the population

has minimum chance for reproduction and hence is declined or dies out.

Furthermore, the best individuals from the current generation produce a new

population from all possible solutions and generate new individuals by the cross-

breeding process. The formation of a new generation consists of mainly different

individuals, which have better characteristics than the previous generation. The

process evolves and after successive generations, the individual with best charac-

teristics disseminates throughout the population. This cross breeding of high-fit

individuals helps to explore the most promising area of the search space.

Thus, the population should converge to an optimal solution to the problem, if

the GA has been designed properly (Busetti, 2007).

4.2.2 Basic principles

A number of steps are carried out in GA to find an optimal solution of the prob-

lem. In the first step, the focus is on construction or forming a suitable coding

(or representation) of the problem. In the second step, the objective function or

fitness function is required to provide a figure of merit (fitness) for each solution.

During execution, a parent will be selected for reproduction and recombined to

make offspring. In the following sections, these aspects are explained in detail.

4.2.2.1 Coding

The probability of potential solution to the problem may be based on a set of

parameters such as the dimensions of the multivariate data. Such parameters

are known as a gene and combined to structure a string of values referred to

as a chromosome. For instance, for the problem to maximize a function that

involves three variables, F (x, y, z), the GA takes each variable as a 10 digit binary

number; hence, the chromosome consists of three genes which each contain 10
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Figure 4.1: The basic GA Pseudo code (Basseville et al., 1993)

binary digits.

As the GA algorithm is inspired by the biological structure of nature, so in

genetic terms, a chromosome that represents each set of parameters is described

as a genotype (Beasley et al., 1993). Further, the genotype consists of information

required to build up an organism that is known as phenotype. The same scenario

is used in GAs, for example, in the change detection task in multivariate data, the

specific set of parameters is identified as the genotype while the combination of

these helps in developing solution and is referred as phenotype. The performance

of a phenotype helps in identifying the fitness of an individual parameter. This

can be calculated using the fitness function to minimize or maximize the fitness

value. The basic pseudo code of GA is illustrated in Figure 4.1.
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4.2.2.2 Fitness Function

The most important part of the GA is the fitness function and it is used in GAs

to solve optimization problem. The ‘fitness’ word is taken from evolutionary

theory because the function evaluates and specifies how each potential solution

is ‘fit’ for a given problem (Mitchell, 1995). The GA initiates with the array

of chromosomes selected randomly which is considered as the initial population.

The chromosome can be a numerical value or values that signifies a possible

solution to the problem that the GA is trying to solve. For example, if a problem

has Xp dimensions, then each chromosome can be encoded as an array elements

of Xp .

Chromosome = [P1, P2, ..., PXp]

where each pi is the specific value of the ith parameter set (Haupt and Haupt,

2004). Moreover, the fitness function evaluates each specific chromosome and

return a single value which is considered the fittest value corresponding to the

ability of individuals that chromosome represents (Beasley et al., 1993).

4.2.2.3 Selection

In the selection process, the GA uses the fitness value as a discriminator between

the quality of solutions obtained from the chromosomes in a GA population. The

chromosomes are selected for reproduction based on the best fitness value. The

fitter the chromosome is, the higher chance it has to be selected as compared with

lower fitness values. Hence, more emphasis on the selection of more highly fit

solutions is created. The most common selection method is replacement in which

the most highly fit chromosomes have greater chances to be selected more than

once or recombined with themselves (McCall, 2005). A number of methods has

been used for the selection process such as Uniform, Roulette Wheel, Stochastic

uniform and Tournament.

In uniform selection method, the parents are selected randomly from a uniform

distribution based on the expectation and number of parents. This method
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is not considered as useful for selection due to unidirectional search but can

be used for testing GAs. The roulette wheel method is used by allocating a

probability to each chromosome and select the chromosomes whose probability

is proportional to its relative fitness. In further steps, the method randomly

selects a chromosome whose probability is equal to the sum of finesses of all

chromosomes in the population (Goldberg and Holland, 1988). Moreover, the

stochastic uniform approach explicitly selects each chromosome randomly with

probability in proportion to its expectation. The algorithm moves along at evenly

space interval and gives a chance to weaker member of population to be selected,

by mutation. In the Tournament selection method, the set of chromosomes are

randomly selected with uniform probability. However, the selection is made from

the set of chromosomes which has the highest fitness (McCall, 2005).

4.2.2.4 Reproduction

The reproduction step is used after the selection of a parent with high fitness

from the population. Further, the chromosome of these parents is recombined

using the crossover and mutation mechanism. The basic mechanism of crossover

and mutation are explained in the following section

4.2.2.5 Crossover

Crossover is used to mix the genetic material of the two selected parents chro-

mosomes and to generate one or two child chromosomes. Once the two parent’s

chromosomes are selected for reproduction, a random number is generated with

uniform probability in the interval [0,1] and the comparison is performed against

the pre-determined “crossover rate”. Thus, if the random number is less than or

equal to the pre-determined crossover then the crossover will be applied other-

wise not. Different crossover functions are used in the literature e.g. single point,

Scattered, Two point, heuristic and arithmetic. The most common crossover op-

erator is single point as shown in Figure 4.2.

In single point crossover, the two individuals with their chromosomes are divided

randomly at a certain position, which forms two head segments and two tail
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segments. Furthermore, the tail and head segments are swap over to produce

two new chromosomes as shown in Figure 4.2. Each individual has obtained

some gene data from each parent and form two offspring.

Figure 4.2: Single-point Crossover

The scatter crossover function is used to create a random binary vector for two

parent chromosomes., The genes are selected from the first parent where the vec-

tor is 1 and from second parent, the genes are selected where vector is 0. Then,

the genes are combined to form the child. The two-point crossover function, first

randomly select the two integers such as a and b between 1 and n where n is the

total number of variables. The genes are selected from the first parent, If the

position of the chromosome is less than or equal to a. However, the genes are

selected from the second parent form the position a+ 1 to b. Furthermore, again

from first parent, the genes are selected, if the position of chromosome greater

than b. Finally, we concatenate the selected genes to form a single gene.

Moreover, the heuristic function is used to create children randomly for two

parents where each one has minimum distance in line from their parent. The

function is based on the assumptions that offspring with a small distance from
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the parent has better fitness and a large distance is associated with worst fitness.

The arithmetic function can be used to create children by calculating uniform

random arithmetic mean from their parents.

4.2.2.6 Mutation

After crossover, the mutation is applied individually to one or more child in the

offspring. In this process, each gene is randomly altered with small probabil-

ity typically 0.001. Mutation provides genetic diversity and enables the GA to

search a broader space. For example, mutation is performed on the fifth gene

of the chromosome as shown in Figure 4.3. Different functions are used to per-

form mutation such as Gaussian, Uniform and Adaptive. The Gaussian function

adds a random number to each vector which is taken from the Gaussian distri-

bution centered on zero. The two parameters such as scale and shrink are used

to manage the standard deviation of this distribution. The scale parameter is

used to induce the standard deviation at the first generation while the shrink

parameter is used to decrease in standard deviation as the generations move on.

Hence, if the shrink parameter is 0 the standard deviation is constant and if

it is 1, the standard deviation shrinks to 0 linearly and indicate that the last

generation is reached. The Uniform function for mutation involves two steps.

First, the algorithm selects a fraction of the vector entries where each entry has

the same probability. Secondly, the random number replaces each selected entry

uniformly from the range of entries. Moreover, the adaptive feasible function is

used to randomly generate directions that are adaptive with respect to the last

successful or unsuccessful generation. The linear constraints and bounds can be

satisfied by choosing proper step length for each direction.
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Figure 4.3: Mutation

4.3 Parameter Optimization using a GA for on-

line change point detection

The MEWMA approach is a statistical method that averages the input data

within a data stream and assigns lower weights to earlier data points. The pri-

mary aim of using the MEWMA is to detect small shifts quickly in time-series

data as discussed in detail in section 3.3.2.1. In the proposed solution, the

MEWMA is used to analyze all the covarying time-series data at the same time

thus taking into account the interrelationship among the variables. MEWMA

is used with standard and tuned parameters such as λ, which weights the cur-

rent data versus historical data, window size, and statistical significance values,

with the aim of accurate change-point detection. In addition, we use the GA

to automatically identify an optimal parameter set for the MEWMA including

λ, window size, and significance value for each activity by evaluating the fitness

function of the F-measure. The MEWMA can be calculated using Equation 3.5

and Equation 3.6 with the same parameter values discussed earlier in section

3.3.2.1 of chapter 3. Furthermore, Multivariate analysis is used to measure more

than one characteristic of a system and also to evaluate the relationship among

these characteristics. In multivariate analysis, we consider the data stream of

length q consisting of specific data points X1,X2,X3, . . . ,Xq (e.g., for accelerom-

eter values Xi =(-1.858,-9.649,1.132) where the elements represent the x, y, and
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z values of the 3-dimensional accelerometer signal. In general, a sequence of

data point X1 to Xq may contain different distributions. In particular, the

two subsequences X1,X2,X3, . . . ,Xi−1 and Xi,Xi+1, . . . ,Xq may follow differ-

ent distributions (say, for example, D1 and D2, where D1 and D2 can be equal or

different). The aim of the algorithm is to determine and classify the position of

change points xi in the data stream. In each data stream, MEWMA is used to

evaluate the position of change points and calculate the exponentially weighted

moving average of multivariate input vectors Xi to provide accurate change-point

detection. We consider a number of possible values for the window sizes (1s, 1.5s,

2s, 2.5s, 3s), which are used to analyze the data using a sliding window with an

increment of 1 data point to perform sequential analysis. The window sizes are

used to evaluate the sequence from inside the window. These window sizes are

chosen to combine some historical data with new data to balance the data and

identify if the change happens. Also, these are reasonable sizes that are taken

from experimentation. Likewise, the Zi represents the MEWMA vector and is

calculated by using the multivariate input vectors as shown in Equation 3.5. In

addition, the variance-covariance matrix of Zi is calculated recursively and rep-

resented by Σi to find T-squared, as shown in Equation 3.6.

Once the T-squared statistic is calculated as shown in Equation 3.6, we consider

a number of possible values for the significance values h (0.05, 0.025, 0.01, 0.005),

which are used to identify the confidence of the entire window. These values are

used in the literature and define regions where the test statistics are unlikely to

lie (Handbook, 2016). If the T-squared value is greater than h, then xi will be

labeled as a change point within the data stream. The analysis of the accelerom-

eter data identifies the actual values of the specific change points, which may

represent an increase or decrease in the data. Thus, when executing a sliding

window k can be used to eliminate such adjacent change points. As discussed

earlier in section 4.2, the GA can be used for solving optimization problems

based on natural selection, which is the process used in driving biological evolu-

tion (Malhotra et al., 2011). The optimization modifies input characteristics of a
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system using a mathematical process to find the minimum or maximum output.

The objective of the fitness function in GA is used to find the optimal solution

to a system. In our case, each distinct combination of the three variables pro-

vides a single solution in the population, namely λi, the window size, and the

significance. Over a number of generations, these solutions “evolve” towards the

optimal solution (McCall, 2005). The fitness function is the core component of

the GA. It evaluates each individual parameter set in the population to find the

solution with an optimal fitness value. In our fitness function, we initialize the

population of vectors whose elements contain the λi values, the window sizes, and

the significance values. Our fitness function then tries to find the solution with

the maximum F-measure value given a range of input values. The F-measure is

used as the measure to find the overall effectiveness of the change detection or

activity recognition by combining the precision and recall. The fitness function

can be defined as follows:

F −measuremax = max(λi,win_size,sig_value)(F −measureMEWMA) (4.3)

For simplicity, we assume λi is equal to λ for i = 1, . . . , p, where λi ranges from

0.1 to 1 for each activity with the corresponding significance values of 0.05, 0.01,

0.025, 0.005 and window sizes of 1 s, 1.5 s, 2 s, 2.5 s and 3 s. Our proposed model

uses Equation 4.3 as the fitness function by initializing upper and lower bounds of

the three parameters to find the maximum F-measure with the optimal parameter

set. After the exploration with different parameter settings, the optimal GA

parameters, which maximize the fitness function of the F-measure, are shown in

Table 4.1.

The selection function in the GA chooses the parents for the next generation

based on their scale values by evaluating the fitness function. As we need to find

the maximum value of the fitness function using Equation 4.3, the individual

with the maximum value of the fitness function has greater chance for repro-
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Table 4.1: Genetic algorithm (GA) Parameters.

Parameters GA

Population Size 50

Selection Stochastic uniform

Reproduction 0.8

Crossover Scattered

Mutation Adaptive feasible

Generations 100

duction and also for generation of offspring. Here we used a stochastic uniform

distribution to build in randomness. The reproduction function helps to deter-

mine how the GA creates children at each new generation. Elite count or the

crossover fraction can be used to create new children at each generation. The

first method specifies the number of individuals that are guaranteed to survive

in next generation. However, the later method specifies the fraction of the next

generation which crossover produces; we here use reproduction probability 0.8

and mutation with probability 0.2 so as to allow some new values to take part

in the optimization process.

The crossover combines two individuals or parents to form a new individual or

child for the next generation. Different methods such as constraint dependent,

scattered, heuristic, and arithmetic approaches can be used depending on the

problem requirement. We choose the scatter method to make random selection.

In the population, the mutation function makes small random changes in the

individuals, which provide genetic diversity and enable the GA to search in a

broader space. Different methods can be used for this, such as the Gaussian

function, uniform function, and adaptive feasible function for random modifi-

cation. We choose an adaptive feasible solution because it randomly generates

directions that are adaptable with respect to the last successful generation.

The GA process, illustrated in Figure 4.4 with respect to the GA parameters
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proposed in Table 4.1, is described as follows (McCall, 2005):

• Initialize the population size is with the number 50, which specifies how

many individuals there are in each of the iterations. Usually, the number

50 is used for a problem with five or fewer variables, and the number of

200 is used otherwise.

• Check the termination condition of the algorithm to determine if the num-

ber of generations has exceeded the maximum value. If so, the GA algo-

rithm is terminated, otherwise, continue with the following steps.

• Calculate the maximum value of the fitness function using Equation (4.3).

• The individuals are selected from the current population applying a stochas-

tic uniform function. Each parent corresponds to a section proportional to

its expectation. The algorithm moves along in steps of equal size. At each

step, a parent is allocated from the section uniformly.

• The individuals are then reproduced randomly with a fraction using the

crossover operation. The scatter function is used to select the genes where

the vector is 1 from the first parent and 0 from the second parent before

combining them to form a child.

• Mutation is then applied with the adaptive feasible method to randomly

generate individuals in the population.

• Finally, a new generation is updated and the GA algorithm loops back to

check the termination condition. The default value for the generations is

100 multiplied by the number of variables used, but we choose the best

value for generation by experimentation with different values

4.4 Experimental Setup

The experiments were performed on two real datasets and one synthetic dataset

for optimal parameter selection using a GA. The evaluation is performed us-

ing different metric measures and the GA is used to automatically identify an
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optimal parameter set, using a fitness function for MEWMA, and parameters

such as the forgetting parameter λ, the window size, and significance value for

each activity so as to maximize the fitness function i.e. the F-measure. The

detailed explanation for all datasets are given in section 4.4.1 and section 4.4.2

respectively.

4.4.1 Real Dataset 1

In our experiments, we used a real dataset for evaluation. AlgoSnap uses the

CrowdSignals platform to collect sample datasets to help and support researchers

in academia. CrowdSignals.io is a non-profit research community. The CrowdSig-

nals platform was created by AlgoSnap to build a large labelled mobile and sensor

dataset for the research community. Our sample dataset is taken from the above

platform and fed to the algorithm as a stream, to represent a real deployment.

This sample dataset was collected from two participants who kept a smartphone

inside the right-front pants pocket and wore a smartwatch on the dominant wrist

(Algosanp., 2016). The data from each participant was captured continuously

for 2.5 hous using 20 sensors with sample frequency of 74.4 Hz. Each participant

performed eight different activities and also labelled these activities.

The eight different activities performed by each participant were eating, washing

hands, smartphone kept on the table, sitting, standing, walking, running, and

driving. The duration of an activity varied from 1 min to 5 min depending on

the activity. A transition could be regarded as an activity itself, especially if

takes a long time. However, here we focus on the core activities and primary

change points. The time delay ranges from 5 ms to 12 ms. The participant used

the smart phone Android app online to explicitly label the start and end times

of each activity performed. However, the start and end time was not very precise

which required manual correction of the data after collection.
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Figure 4.4: Flow chart of various stages to perform genetic algorithm (GA)
optimization
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Moreover, the labeled data is sent periodically to the server which runs the GA

offline for optimization as shown in Figure 4.5. The start and the end time for

each activity are denoted in the dataset as a truth table. In the sample dataset,

various sensors were used to collect data, but only accelerometer data is used in

our experiments. For illustrative purpose, only one accelerometer sensor, with

three dimensions, was used but other authors have demonstrated how multimodal

sensors can be used to increase activity recognition and enable the recognition of

activities in various situations (Han et al., 2014). After the data collection, the

activity execution of accelerometer data was wirelessly streamed to a receiving

computer via the IEEE 802.15.1 Bluetooth communications protocol.

The study in (Ziefle et al., 2013) elaborates the high acceptance for telemedicine

and usability of a telemedicine approach. The deployment of such an application

is useful in emergency situations and achieves higher accuracy and quality of

data for monitoring of patient vital parameters over time. A limitation could

be the privacy issues, date security, and high probability of false alarms. In our

work, we partly address the additional problem of low user acceptance due to

excessive requirements to interact with the mobile phone.

4.4.1.1 Results and Discussion

A real dataset, as described, has been used by the GA to identify the optimal

set of parameters for the MEWMA approach in change-point detection. For

the multivariate approach the x, y and z acceleration magnitude is calculated

from the captured data and used as the input to the MEWMA algorithm. The

MEWMA algorithm is initially used to analyze different parameters including λ

(0.1 to 1), the window size (1 s, 1.5 s, 2 s, 2.5 s, 3 s) and the significance values

(0.05, 0.025, 0.01, and 0.005) to find the accurate change point. We considered all

the values of λ in the range varying from 0.1 to 1 to allow for some contribution

from both historical data and current data.
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Figure 4.5: The System Model

Moreover, MEWMA also combines historical data and current data. Following

this, the GA is used to identify the optimal set of parameters for the MEWMA

algorithm. However, the GA implemented in Matlab 2014 typically takes a long

time, where in our experiments it takes approximately between 10 min and 25

min to run on a system with processor 3.40 GHz and 8 GB RAM. The parameter

values are not likely to change too frequently, so the GA could be run offline pe-

riodically. The F-measure metric was used to evaluate the optimal change point
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in the activity monitoring using the GA. In our experiments, when determining

true positives a quarter second buffer was included at either side of the manually

labelled change point to accommodate subjectivity errors inherent in manual la-

belling. Thus, a detected change point was considered true if its index in the

data stream, i, i ε z − f/4, ..., z + f/4 where z is the index in the data stream

of the manually labelled change point and f is the sampling frequency in Hz.

In our experiment, we formed a dataset containing activities such as walking to

running, walking to driving, walking to washing hands, walking to standing, and

walking to sitting.

The objective of our proposed technique is to identify the optimal set of MEWMA

parameters using the GA for detecting change points in high-level activities such

as walking to running and walking to driving, examples of which are shown in

Figures 4.6 and 4.7 respectively. The sliding window with optimal change-point

detection parameters for the activity “walking to running” has window size of 3s

with significance value p = 0.05 and λ = 0.7. The optimal change-point detection

parameters for the activity “walking to driving” are that the window size is 2.5s,

significance value p = 0.05, and λ = 0.6.

Figure 4.6: A real dataset example of a sliding window change-detection
result for the activity “walking to running”.

96



Chapter 4

Figure 4.7: Real dataset example of sliding window change-detection results
for the activity “walking to driving”.

The experimental results for real dataset of five different activities are presented

in Table 4.2. Moreover, the experimental results identify the changes between

core activities are shown in Figure 4.6 and Figure 4.7 respectively. The detected

transitions were all of the transitions that occur in the dataset. Here, the data

points relating to the core activities are used to determine when the change

points occur. In our experiments, we analyzed dynamic activities such as walk-

ing followed by another dynamic activity such as running or driving due to its

complexity and varying characteristics.

Table 4.2: Non-optimized and optimized with GA parameter set for five
different activities on a real dataset

Activity Sig Value Non-Optimized Optimized with GA

λ Win Size F-Measure Accuracy λ Win Size F-Measure Accuracy

Walk to Sit

0.05 0.3

2s 50% 99.4% 0.4 1.5s 66.7% 99.8%

Walk to Stand 2s 50% 99.4% 0.4 1.5s 66.7% 99.8%

Walk to wash hands 2.5s 50% 99.4% 0.5 2s 66.7% 99.8%

Walk to Driving 3s 40% 98.5% 0.6 2.5s 50% 99.4%

Walk to Running 3s 40% 98.5% 0.7 3s 50% 99.4%
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The proposed approach optimized the MEWMA parameters in order to find the

best set of parameters for accurate change point detection for the different activ-

ities presented in Table 4.2. Furthermore, accuracy and F-measure metrics have

been used to find the optimal parameters selection of the MEWMA algorithm.

The accuracy is the ratio of the number of correctly classified data points to the

total number of data points and can be calculated using Equation 3.6. Moreover,

the F-measure is used to find the overall effectiveness of the activity recognition

by combining precision and recall using Equation 3.8, Equation 3.9 and Equation

3.12 respectively. The Accuracy and F-measure are discussed in detail in chapter

3.

The non-optimized experimental results on the real dataset are presented in

Table 4.2. The maximum F-measure and accuracy values are in the range of

40%–50% and 98.5%–99.4%, respectively among all the activities. The walking

activity followed by a static activity achieved a maximum F-measure of about

50%, whereas subsequent dynamic activities have achieved 40%. However, the

optimized experimental results on a real dataset that achieved the maximum

accuracy and F-measure were in the range of 99.4%–99.8% and 50%–66.7%, re-

spectively. The walking activity followed by static activity achieved a maximum

F-measure of circa 66.7%, whereas subsequent dynamic activities achieved 50%.

The highest accuracy and F-measure values in the experimental results on real

dataset are achieved using the GA optimal parameter set of λ (0.4–0.7), signifi-

cance value p = 0.05 and window sizes (1.5 s, 2 s, 2.5 s and 3 s) as shown in Table

4.2. The highest F-measure values achieved are 50%–66.7% for all activities us-

ing the optimal parameter set with the real dataset. A dynamic activity such as

walking followed by a static activity such as sitting, standing, and hand washing

achieved the highest F-measure of 66.7% with an optimal parameter set of λ (0.4

and 0.5), significance value p = 0.05, and window size 1.5s and 2s. However, the

subsequent dynamic activities such as driving and running achieved the highest

F-measure of 50% with an optimal parameter set of λ (0.6 and 0.7), significance

value p = 0.05, and window size 2.5s and 3s. Moreover, the accuracies achieved
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with optimal parameter set by the GA ranged from 99.4% to 99.8% as shown in

Table 4.2.

The experimental results show that the F-measure values are higher using the

optimal parameter set from the GA than the results with non-optimized param-

eters. Additionally, in Table 4.2, the accuracies are also improved from a range

of 98.5% to 99.4% with non-optimized parameters to a range of 99.4% to 99.8%

with the optimized parameters.However, as there is a little room for improve-

ment hence, improvement on this data is very challenging. When we take out the

inter-activity transition period and simulate data on this basis, the advantage of

using the GA optimization is even more significant. The reason is that in the

simulated data we ignored the transition data, which may be from a different

distribution from the data relating to the core activities (Khan et al., 2016).

4.4.1.2 Walking in the Wild

Generally, sensor data is collected in a laboratory setting and subjects perform

the activities that are specified by experimenters. In the wild, however, behav-

ior is not prescribed and the sensor data must be labeled during or after the

sensor data is generated, as shown in Figure 4.8. This problem occurs in online

change detection in real-time scenarios. In this situation, we can alert the re-

minding software that we would like to sample data more frequently to increase

the accuracy of activity detection. Also, we would like to be able to identify and

detect early on that a change seems to be happening and ask the user for some

information on what activity is actually being performed in order to improve our

algorithm. An alert about the change could be issued to get a response from the

user on what activity is being performed. The alert and response thus provide

more labeled data for learning. Periodically we rerun the GA algorithm offline

using new data. The data is typically processed locally on a mobile phone or

smart watch but a summary of the data is transferred to the server periodi-

cally.The inter-activity transition period was taken as an activity to identify a

change point in different user activities.
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Figure 4.8: Walk in the Wild

When the person is walking or sitting for long time, the storing or handling of

the data could drain the battery as a mobile device typically has limited battery

capability. The assumption of this work is that we need a lightweight and early

warning indicator when a change is about to happen. Walking in the Wild

refers to transitions from walking to a state that is not prescribed in advance.We

also performed experiments on walk to wild irrespective of the activity which

is happening next, as presented in Table 4.3. The optimal parameter set is

discovered for accurate change detection using the GA. The best F-measure and

accuracy achieved was 66.7% and 99.8% respectively with the optimal parameter

set of λ = 0.7, significance value p = 0.05, and window size 3s. The experimental

results of walk to wild are presented in Table 4.3. In our experiments, the data

was used from the existing dataset discussed in section 4.4.1 from walking into

different user activities such as sit, stand, drive and run for accurate change point

detection.

A class imbalance problem usually exists in datasets when the total number

of instances of one class (the minority) is excessively low as compared with the

number of instances of the other (majority) class (Ni et al., 2015). This highlights
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Table 4.3: Optimized parameter set with GA for walking in the wild on real
dataset

Activity λ Win Size Sig Value F-Measure Accuracy

Walk to Wild .7 3s 0.05 66.7% 99.8%

the skewed distribution of classes within the dataset, and often the minority class

is the class of interest (Galar et al., 2012). In our dataset, we have only one TP

point (represents a correctly identified change point) and a high number of TN

(the non-transitional points which are not labeled as change). We used the F-

measure for evaluation because it is a combination of precision and recall, as

presented in Equation 3.11. As the precision is the ratio of TP over the total

number of TP and FP (the non-transition point which the algorithm highlighted

as a change) therefore one or two FP detections reduced the F-measure to 66.7%

and 50%, respectively, due to the imbalance class problem in our real dataset.

4.4.2 Real Dataset 2

Real and synthetic datasets of accelerometer data were used for evaluation. The

real dataset consisted of two users’ data generated by wearing the shimmer wire-

less sensing platform. The sensor placement positions on the subject’s body

enabled anterior-posterior and lateral movements to be captured effectively. The

two users performed 8 different activity transitions consisting of sit to stand,

stand to sit, stand to walk corridor, stand to walk downstairs ,stand to walk

upstairs, walk corridor to stand, walk downstairs to stand and walk upstairs to

stand (Zhang et al., 2011). For each activity, the participant remained in each

state for 30 seconds and then transitioned to another activity like sit to stand.

The activity execution of accelerometer data was wirelessly streamed to a receiv-

ing computer via the IEEE 802.15.1 Bluetooth communications protocol (Zhang

et al., 2011).
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4.4.2.1 Synthetic dataset

We have generated synthetic dataset from the real dataset discussed in section

4.4.2 for the same set of activities as the real dataset using a multivariate nor-

mal random number generator (mvnrnd) Matlab function (Multivariate, 2016).

The mean and covariance vector is chosen randomly for each activity using a

multivariate normal random numbers distribution function. The ten instances

(random vectors) are generated for each activity and these random vectors were

used to generate a synthetic data set for 8 different activities. The different

parameters for change detection algorithm are used to find the primary change

points in these activities. After exploration with different GA parameter setting,

the optimal GA parameter settings chosen as shown in Table 4.1 which is used

to maximize our fitness function and return the optimal best parameters with

maximum F-measure.

4.4.2.2 Results and Discussions

This Section evaluates the genetic algorithm on a real and synthetic dataset

that identifies the optimal set of parameters for a Multivariate Exponentially

Weighted Moving Average approach to change point detection. For the multivari-

ate approach the x, y and z acceleration magnitude is calculated from captured

data and used as input to the MEWMA algorithm. The MEWMA vector is used

to detect changes in the data stream. The MEWMA is initially used to analyze

different parameters; λ (0.1 to 1) window size (1s, 1.5s, 2s, 2.5s, 3s) and signif-

icance values (0.05, 0.025, 0.01, and 0.005) to find the accurate change point.

Following this, the GA is used to identify the optimal set of parameters for the

MEWMA algorithm. The F-measure metrics were used to evaluate the optimal

change point detection in activity monitoring using GA. The detected change

point is considered true if in the data stream the index i, i ε z − f/4, ..., z + f/4

where z indicates the index of manually label change in the data stream and f

denotes the sampling frequency in Hz.The objective of our proposed technique

is to identify the optimal set of MEWMA parameters for detecting transitions
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in high level activities such as stand to walk downstairs and walk downstairs to

stand as shown in Figure 4.9 and Figure 4.10 respectively. The following Figure

4.9 (a & b) and Figure 4.10 (a & b) are the examples of Real and synthetic

datasets respectively.

The real dataset example of activity ’stand still to walk downstairs’ and ‘walk

downstairs to stand still’ is shown in Figure 4.9. The sliding window change

detection results was window size 1s second with significance p=0.05, λ=0.5 and

2s second win size, significance p=0.05 and λ=0.7 respectively as shown in Figure

4.9.

The synthetic dataset example of activity ’stand still to walk downstairs’ and

‘walk downstairs to stand still’ is shown in Figure 4.10. The sliding window

change detection results was window size 1s second with significance p=0.05,

λ=0.5 and 2s second window size, significance p=0.05 and λ=0.7 respectively as

shown in Figure 4.10.

The results of our experiments on real and synthetic datasets for eight different

activities are presented in Table 4.4 and 4.5. The proposed technique optimized

the MEWMA parameters to find the optimal set of parameters for accurate

change detection in each activity as presented in Table 4.4 and 4.5.

As discussed earlier accuracy and F- measure metrics were used for evaluation

of optimal parameter selection for the MEWMA algorithm. The experimental

results on the real dataset for best F-measure with optimal parameter set of λ 0.5

& 0.7, significance value p=0.05 and window sizes (0.5s, 1s and 2s) is achieved

for each activity as shown in Table 4.4.

The highest F-measure achieved is 66.7% and 50% for optimal parameter set

using GA in all activities from the real dataset. The activities which initially

start with static activities such as sit and stand achieved highest F-measure

of 66.7% with optimal parameter set of λ =0.5, significance value p=0.05 and

window size 0.5s & 1s. The activities which start with dynamic behaviour such as

walk downstairs, walk upstairs or walk corridor achieved the highest F-measure

of 50% with an optimal parameter set of λ=0.7, significance value p=0.05 and
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(a) Stand to Walk Downstairs

(b) Walk Downstairs to Stand

Figure 4.9: (a and b): Real dataset example of sliding window change
detection results for the activity ’stand still to walk downstairs’ and ‘walk

downstairs to stand still’
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(a) Stand to Walk Downstairs

(b) Walk Downstairs to Stand

Figure 4.10: (a and b): Synthetic dataset example of sliding window change
detection results for the activity ’stand still – walk downstairs’ and ‘walk

downstairs to stand still’
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window size 2s. The accuracy achieved for optimal parameter set with GA range

from 99.4% to 99.8% as shown in Table 4.4.

Table 4.4: Non-Optimized and Optimised with GA parameter set for 8
different activities on Real dataset

Activity Sig Value Non-Optimized Optimized with GA

λ Win Size F-Measure & (Accuracy) % λ Win Size F-Measure & (Accuracy) %

Sit to Stand

0.05 0.3

1s 50(99.4) 0.5 0.5s 66.7(99.8)

Stand to Sit 1s 50(99.4) 0.5 0.5s 66.7(99.8)

Stand to Walk Corridor 1.5s 40(98.5) 0.5 1s 66.7(99.8)

Stand to Walk Downstairs 2s 50(99.4) 0.5 1s 66.7(99.8)

Stand to walk Upstairs 1.5s 40(98.5) 0.5 1s 66.7(99.8)

Walk Downstairs to Stand 2s 40(98.5) 0.7 2s 50(99.4)

Walk Corridor to Stand 2.5s 40(98.5) 0.7 2s 50(99.4)

walk Upstairs to Stand 1.5s 40(98.5) 0.7 2s 50(99.4)

The experiments were also performed on a real dataset without using an opti-

mization technique as presented in Table 4.4. The maximum F-measure achieved

was in the range of 40% to 50% for all activities. The activities with static ac-

tivity initially achieved a maximum F-measure of circa 50% whereas dynamic

activities initially achieved 40%. The accuracy achieved for the non-optimized

results ranged from 98.5% to 99.4%. The evaluation of the results shows that

the F-measure was higher about 50% to 66.7% for optimal set using GA than the

40% to 50% for non-optimized results. Moreover, as presented in Table 4.3, the

accuracy is also improved from 99.4% to 99.8% with optimization when compared

with the non-optimized accuracy of 98.5% as opposed to 99.4%.

We also used a synthetic dataset for our experiments; results are presented in

Table 4.5. For synthetic data, we repeatedly generate randomized vectors 10

times for each activity. The experiments were performed on each random vector

(10 times) for each activity and calculated the average F-measure. The achieved

repetitions are very useful and have a good basis for evaluation of synthetic

data. The highest average F-measure achieved for activities starting with a

static activity such as sit and stand was in the range of 88.34% to 96.76% with

optimal parameter set λ=0.4, significance value p=0.05 and window sizes 0.5s.

The activities which started with a dynamic activity achieved the highest F-

measure; 80.5% to 86.67% with optimal parameter set λ=0.6, significance value

p=0.05 and window sizes 0.1s as shown in Table 4.5. In contrast to other results,
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the F-measure for synthetic dataset is high because of taking the average of the

10 repeated experiments for each activity.

Table 4.5: Optimal parameter set for 8 different activities using GA on
Synthetic Dataset (Repeat 10 Times)

Activity λ Win Size Sig Value Average Mean (µ) Average Covariance (COV ) Average F-Measure %

Sit to Stand 0.4 0.5s

0.05

1843.75 15.71 96.67

Stand to Sit 0.4 0.5s 1872.30 617.87 93.34

Stand to Walk Corridor 0.4 0.5s 1869.26 1481.92 91.67

Stand to Walk Downstairs 0.4 0.5s 1870.34 2358.89 90.67

Stand to walk Upstairs 0.4 0.5s 1863.51 2267.31 88.34

Walk Downstairs to Stand 0.6 1s 1871.322 1488.38 86.67

Walk Corridor to Stand 0.6 1s 1870.787 1049.896 85.13

walk Upstairs to Stand 0.6 1s 1867.908 1442.591 80.50

The results indicate that the GA optimized algorithm provides an improvement,

however, when we take out the inter-activity transition period and simulate data

on this basis, the improvement is much more significant.

The decline of the F-measure is also partly due to the imbalance class problem

(Galar et al., 2012) in our dataset. This problem happens when the total number

of a class data (positive) is less than then the total size of other classes of data

(negative). This highlights the skewed distribution of classes within the dataset

and identifies that the minority class is the class of interest. In our dataset,

we have only one true positive (TP) (which represents a correctly identified

change point) and a high number of true negatives (TN) (the non-transitional

points which are not labelled as change). We used the F-measure for evaluation

because it is a combination of precision and recall, as presented in Equation.

3.12. Likewise, the precision is the ratio of TP over the total number of TP and

false positives (FP) (the non-transition point which the algorithm is highlighted

as a change) so that the one or two FP detections reduced the F-measure to

66.7% and 50% due to the imbalanced class problem in our real dataset.
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4.5 Chapter Summary

The genetic algorithm is used to identify the optimal set of parameters for the

MEWMA approach and automatically detect change points corresponding to dif-

ferent transitions in the user activities. The different parameters of the MEWMA

are analyzed and evaluated to identify the optimal set of parameters for each

activity using the GA. The optimal set of parameters selected using the GA

outperformed on real world accelerometer data in terms of the accuracy and the

F-measure. In this study the automatic optimization of the optimal parame-

ter set was considered within the context of activity monitoring. Moreover, the

MEWMA is a lightweight algorithm and can be incorporated into real world

systems such as mobile-based applications for the collection and active sampling

of labeled data.The change points in the data can be used to identify changes

in activities and recognize and monitor good behaviour such as healthy exer-

cise patterns based on these activities. The limitations of this work are the

datasets that have the class imbalance problem and proper selection of lambda

value for a specific activity. As the parameter set is dependent on activities so

a parameter set can be generalized for a specific set of activities by clustering

activities.Another limitation is using the same lambda value across all variants.
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Evaluation Framework to Analyze Differ-
ent Multivariate Approaches and Optimiza-
tion Techniques

5.1 Introduction

Within this chapter, multivariate approaches have been used to analyze and

evaluate multivariate data for automatic change point detection. In multivari-

ate data analysis, multiple characteristics of a system are evaluated simultane-

ously and the relationship among these characteristics are identified. Chapter

4 has provided detailed information about the genetic algorithm that was used

to automatically identify an optimal parameters set, using a fitness function for

MEWMA, including parameters such as the forgetting parameter λ, the window

size, and significance value for each activity so as to maximize the fitness func-

tion. Chapter 5 provides detailed information about Multivariate Cumulative

Sum Control Chart (MCUSUM) to automatically detect change points in user

activities. Also, the Particle Swarm Optimization (PSO) is discussed in detail

and used to identify optimal parameter set for MCUSUM and MEWMA for ac-

curate change point detection. The MCUSUM is also used as a benchmark to

our proposed technique MEWMA.

Moreover, MEWMA and MCUSUM approaches are used with GA and PSO to

automatically identify an optimal parameter set using different parameters for
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MEWMA and MCUSUM, so as to maximize the objective function namely the

F-measure. The evaluation is performed using different metric measures and

the experimental results shows that the proposed approach MEWMA performs

better than the benchmark approach MCUSUM.

5.2 Cumulative Sum Control Chart (CUSUM)

This chapter introduces the traditional change detection used in process control

and also discusses the control charts which are used to study process changes over

time and determine whether the process is in control statistical state. Therefore,

the univariate and multivariate CUSUM control chart are discussed in detail in

this section for change detection in multivariate data.

Statistical process control (SPC) is the collection of procedures and methods for

identifying specific causes of variations and monitoring the process behaviour to

take in control of a target value. The main objective of SPC is to detect a change

in the process mean as soon as possible after it has happened (Golosnoy et al.,

2009). The control chart is the most important tool of SPC and developed by

Walter Shewart in the early 1920s. The control chart contain the recorded data

and helps in identifying any unusual event happens in the data such as a very low

or high observation happened compared with the “typical” process performance

(Golosnoy et al., 2009).

5.2.1 Control Chart

The statistical basis of a control chart typically consists of a centre line that

represents the target value or the average value. The two horizontal lines are

identified as the lower control limit (LCL) and upper control limit (UCL). The

selected control limits are used to analyse if the process is in control. The process

will be considered to be in control if the points falls within the control limits

and therefore no action will be required. However, if a point falls outside of the

control limits then the process is out of control and appropriate action is required
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to inquire and eliminate the causes liable for such practice (Hongcheng, 2007).

An example of a typical control chart is presented in Figure 5.1, which comprises

the graphical display of a quality characteristic that has been computed from a

sample versus the sample number.

Figure 5.1: Control Chart (Hongcheng, 2007)

A number of control charts such as the X and S chart (Chen and Cheng, 1998),

EWMA (Lucas and Saccucci, 1990), CUSUM (Cho et al., 2016) and Shewart indi-

viduals control chart (Kuncheva, 2009) have been used for various data structure

such as variable or attribute data types (Bodnar and Schmid, 2007) that were

subsequently developed to use for univariate data to monitor the centre and the

variability of a process (Bodnar and Schmid, 2007). However, the CUSUM con-

trol chart is very efficient and has been widely used in the literature (Taylor,

2008), (Cho et al., 2016), (De Oca et al., 2010) and (Koepcke and Kretzberg,

2013) for detecting a small shift of the process mean.

5.2.2 Cumulative Sum (CUSUM) Chart

The CUSUM was initially developed by (Page, 1954) with the aim of detecting

persistent shifts in the data stream of a process. In CUSUM, each plotted data

point signifies the algebraic sum of the earlier data points and identifies recent

deviation from the target. The CUSUM charts have received attraction earlier
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for detecting small but persistent shifts in the data. In Univariate CUSUM, the

data are recorded individually at regular intervals and the results are based on

the uncertain deterioration in the output after each observation. The univariate

CUSUM can be defined using Equation 5.1.

Ci = max{Ci−1 + Xi − µ, 0}, i ≥ 1

C0 = 0
(5.1)

where Ci is the ith CUSUM vector, Xi is the ith input observation vector,

i = 1, 2, 3, ..., n and µ is the mean of the input vector. Initially CUSUM starts

with C0 = 0 and then sequentially calculates the CUSUM vector. The example

of univariate CUSUM is represented in Figure 5.2. The x-axis represents the

number of input data and the y- axis represents the CUSUM values. In the

process, the observation after time 60 has shifted upward as the CUSUM values

shown in the Figure 5.2.

Figure 5.2: Univariate CUSUM
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The limitation of univariate CUSUM is that it only analyzes one variable and also

did not present much information about the data. Unlike Univariate data, the

multivariate data involves more than one variable and presents more information

about the data. Also, the analysis of multivariate data is complex to evaluate

than univariate data. Therefore, an extension of CUSUM is Multivariate Cumu-

lative SUM (MCUSUM) which is used to simultaneously monitor two or more

related process of the input observation. The following section give details of the

MCUSUM.

5.2.3 Multivariate Cumulative Sum (MCUSUM) Chart change

point detection algorithm

The cumulative sum control chart is often used when small changes is more

important in the data. The multivariate data processing is more complicated

than univariate due to the simultaneous multidimensional data processing and

evaluation. The Multivariate Cumulative SUM Control Chart (MCUSUM) is a

statistical method that is used to simultaneously monitor two or more related

process of the input observations to find the smaller and persistent shifts in the

process data. The MCUSUM approach proposed by (Crosier, 1988) replaced the

scalar quantity of univariate cumulative sum into vectors. The MCUSUM can

be defined using Equation 5.2 and 5.3.

Ci =
√

(Si−1 + Xi − µ)′Σ−1
Si

(Si−1 + Xi − µ) (5.2)

Si =

0 if Ci ≤ k

(Si−1 + Xi − µ)(1− k/Ci) if Ci > k

(5.3)

where Xi is the input vector of p-dimensional set of observations for i = 1, . . . , p

and µ is the target vector represents the mean of the input observations while

k(> 0) is the reference value and optimal value for k is 0.5 (Crosier, 1988), which
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is used for tuning a specific shift (Hongcheng, 2007) (Hameed et al., 2016). The

Ci is the generalized length of the CUSUM vector. Initially, MSUCUM starts

with S0 = 0 and then sequentially calculates the MCUSUM vector. The Σ is the

covariance matrix of the input observations and Si is the multivariate CUSUM

vectors. The MCUSUM out of control vector is calculated using Equation 5.4.

Yi =
√

S
′
iΣ

−1
Si

Si < h (5.4)

where Si is the MCUSUM vector and S
′
i is its transpose. Σi is the covariance

matrix of Si and h(> 0) , is chosen to achieve specified in-control signal. The

Figure 5.3 represents the x, y and z input observations of the nine different ac-

tivities collected using 3-axis accelerometer sensor. The details about the data

collection is discussed later in section 5.6.1.

Figure 5.3: Accelerometer Signal

However, for clear understanding and visualization, two activities have been

extracted from Figure 5.3. The two activities stand to walk corridor is shown in

Figure 5.4 where the x-axis represents the number of data points of the input

observation and the y-axis shows the acceleration. The activity has been changed

from stand to walk corridor at approximately just after data point at 1900 as

activity change from one activity to another as shown in Figure 5.4 which identify
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the accurate change point in the data.

Figure 5.4: Stand to Walk Corridor

Figure 5.5: MCUSUM Vectors for Stand to Walk Corridor activity

Further, the example of Multivariate CUSUM is represented in Figure 5.5. The

x, y and z represents MCUSUM vectors of the input observations for the stand to

walk corridor activity of an accelerometer signal. The x-axis represents the num-

ber of data points of the input observation and the y-axis shows the acceleration.

In the process, the mean of the observations has been changed at approximately

the 1900 data point as shown in Figure 5.5 which can be identified as the change
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point in the data from stand to walk corridor.

5.3 Particle Swarm Optimization (PSO)

This section evaluates the effectiveness of the optimization approach which is

used to find the minimum or maximum value of a function. The PSO is a rel-

atively recent heuristic search algorithm (Hassan et al., 2004) used for solving

optimization problem. The Particle Swarm Optimization (PSO) is a population

based stochastic optimization technique inspired by the swarming or social be-

haviour of bird flocking or fish schooling. A “swarm” can be defined as a chaotic

collection of moving individuals in the population that lean to form cluster where

each individual seems to be moving in a random direction.

Particle Swarm Optimization (PSO) was first introduced in 1995 by James

Kennedy and Russell C. Eberhart (Eberhart and Kennedy, 1995) with the aim

to analyse the search space of a problem and also to find the required parame-

ters setting to minimize or maximize a particular objective or fitness function.

In the field of evolutionary computation, the concept of swarm intelligence was

originated from the observation of swarming habits of certain types of animals

such as bird and fish (Blondin, 2009).

The algorithm is initialized with a population of random solutions in order to

find and search the optima by updating generations. In PSO, each particle rep-

resents a solution and the population of solutions is called a swarm of particles.

Each particle keeps track of its coordinates in problem space which is associated

with the best possible solution achieved so far and is called personal best (pbest).

Moreover, another best value is also tracked which is obtained in the neighbours

of the particle and is called local best (lbest). Once each particle takes all the

population as its topological neighbours, the best value is a global best and is

called (gbest). The best position of the particle is selected by calculating the ve-

locity. Once a new position is reached, the best position of each particle and the

best position of the swarm are updated as needed. The velocity of each particle
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is then adjusted based on the experiences of the particle (Hu et al., 2004). The

PSO have similar functionality to the GA. The PSO algorithm is initialized with

a population of random solutions in order to find and search the optima by up-

dating generations. However, Unlike GA, PSO has no evolution operators such

as crossover and mutation. In PSO, the potential solutions are called particles

which fly through the problem space by following the current optimum particles.

The PSO consists of two main operators: position update and velocity update.

During the execution of PSO algorithm, in each generation, every particle at-

tempts to accelerate towards the particles of the previous best position and global

best position. In each iteration, based on the current velocity of the particle, a

new velocity value is calculated for each particle which updates the velocity for

the current particle. The updated velocity is then further used to calculate the

new position of each particle in the search space. This process is repeated for

a given number of times till the end of the process calculated by the number of

iterations in the process.

Equation 5.5 and Equation 5.6 are used respectively in PSO to calculate the

updated velocity (v) and position (x ) of the new particle as the process moves

on.

vk+1
i,j = vki,j + c1r1(xbestki,j − xki,j) + c2r2(xgbestkj − xki,j) (5.5)

xk+1
i,j = xki,j + vk+1

i,j (5.6)

Where vk+1
i,j and xk+1

i,j represents the jth element of the ith particle’s velocity and

position vector respectively at the k + 1th iteration . Moreover,r1 and r2 are the

random numbers which are uniformly distributed and in the range of (0, 1). The

xbest and xgbest represents the best positions in the ith particles. c1 and c2 are

the learning factors and represent the particle confidence in its cognition. The

values for the two parameters are set to 2 as presented initially by (Eberhart and
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Kennedy, 1995). The reason of both parameters having the same value is to keep

balance between the local and global best position convergence because a high

value of c1 or c2 will encourage the faster convergence towards specific position

or direction (Kaveh, 2014).

Figure 5.6 indicates the schematic movement of a particle for updated velocity

and position of a new particle using Equation 5.5 and Equation 5.6 respectively.

Figure 5.6: Movement of velocity and position updates in PSO algorithm
(Kaveh, 2014)

The PSO algorithm maintains several candidate solutions simultaneously in the

search space. In each iteration, the objective function is used to evaluate the

candidate solutions and optimize its fitness value. Also, each candidate solution

is represented as a particle and can be used to find minimum or maximum of the

objective function.The pseudo code of PSO is illustrated in Figure 5.7.
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Figure 5.7: Basic PSO Pseudo code

In the initial step, PSO randomly selects the candidate solutions in the search

space. As shown in Figure 5.8, The PSO initially choose four particles as can-

didate solutions and try to find the global maximum in the search space. The

x-axis shows all the possible solutions while the curve represents the objective

function in the search space. The PSO algorithm does not have information

about the objective function and therefore does not know how far or near the

candidate solution is to the local or global maximum. The objective function is

used by PSO algorithm to evaluate the candidate solution based on its fitness

value.

In PSO, each particle manages and keep record of its position, velocity and fitness

value. In addition, it also maintains the best fitness value achieved during the

algorithm process and is called the individual best position and the candidate

solution that achieves this best fitness value is called the individual best candidate

solution (Blondin, 2009).
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Figure 5.8: Initial PSO state (Blondin, 2009)

Likewise, the PSO algorithm among all possible particle in the swarm achieves

the best fitness value which is known as global best fitness and the candidate

solution that achieves this fitness is known as global best position or global best

candidate solution (Blondin, 2009).

5.4 Change detection using MEWMA and

MCUSUM in multivariate data

As discussed earlier that MEWMA and MCUSUM are used for change detec-

tion in multivariate data analysis. The details of MEWMA for change detec-

tion in multivariate data analysis has been explained and discussed in section

4.3. This section gives a detailed explanation about MCUSUM for change de-

tection in multivariate analysis. we consider the data stream of length q con-

sisting of specific data points X1,X2,X3. . . .Xq e.g. for accelerometer value,

Xi = (1.253,−9.382, 2.542) where the elements represent the x, y and z values

120



Chapter 5

of 3-dimensional accelerometer signal. In general, a sequence of data points Xi

to Xq may contain different distributions. In particular, the two subsequence

X1,X2,X3, ...,Xi−1 and Xi,Xi+1, ...,Xq may follow different distributions such

as D1 and D2. The D1 and D2 can be the same or different. In each data stream,

MCUSUM is used to calculate the Cumulative sum for each data point Xi to

identify the position and detection of accurate change points in the data stream.

In MCUSUM Si is the MCUSUM vector calculated by using the multivariate

input as shown in Equation 5.3 and the covariance matrix of Si is calculated and

represented by Σi to find as shown in Equation 5.4.

In our experiments different window sizes (1s,2s,3s) are used to analyze the input

data using sliding window with an increment of 1 data point to perform sequential

analysis as disused earlier in section 3.3.3. The window sizes are used to evaluate

the sequence of data points in the window. These window sizes are chosen to

combine some historical data with the new data to identify any change. These

are reasonable sizes that are taken from experimentation. Moreover, once Yi

for MCUSUM is calculated as shown in Equation 5.4, we consider a number of

possible values h (0.05, 0.025, 0.01 0.005) in order to evaluate the confidence

of the entire window. The condition is verified if Yi is greater than h, then xi

will be labelled as a change point within the data stream otherwise not. The

significance values are used in literature to define regions where the test statistics

are unlikely to lie (Handbook, 2016).

5.5 Parameter optimization using GA and PSO

The GA has been discussed in detail for parameter optimization in section 4.2.

Therefore, detailed information about PSO will be discussed in this section for

optimal parameter selection.

The objective function in the GA and PSO is used to find the optimal solution

to a system. In our case, each distinct combination of the three variables pro-

vides a single solution in the population, namely λi, the window size, and the
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significance for MEWMA and k, the window size, and the significance variable

for MCUSUM. Over a number of generations, these solutions “evolve” towards

the optimal solution.

Our objective function then tries to find the solution with the maximum F-

measure value given a range of input values for both algorithms. The F-measure

is used as the measure to find the overall effectiveness of the activity recognition

or change detection by combining the precision and recall. The objective function

for GA and PSO using MEWMA and MCUSUM can be defined as follows in

Equation 5.7 and Equation 5.8 respectively.

F −measuremax = max(λi,win_size,sig_value)(F −measureMEWMA) (5.7)

F −measuremax = max(k,win_size,sig_value)(F −measureMCUSUM) (5.8)

Both algorithms MEWMA and MCUSUM use the three variables as input where

window size ranges from 1s, 2s and 3s and significance values of 0.05, 0.01, 0.025,

0.005 are same for both algorithms. However, MEWMA used λi ranges from 0.1

to 1 and MCUSUM used k=0.5 as a standard value presented in (Crosier, 1988)

as shown in Equation 5.7 and Equation 5.8 respectively.

The objective function defined in Equation 5.7 and Equation 5.8 are initialized

by upper and lower bounds of the three parameters to find the maximum F-

measure with the optimal parameter set. After the exploration with different

parameter settings, the optimal GA and PSO parameters, which maximize the

fitness function of the F-measure, are shown in Table 4.1 and 5.1. The GA pa-

rameter has shown in Table 4.1 and discussed in detail in section 4.3 of chapter

4. The PSO parameters is shown in Table 5.1 as follows.
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Table 5.1: Particle Swarm optimization (PSO) Parameters

Parameters PSO

Swarm Size 50

Initial Swarm pswcreationuniform

HybridFcn fmincon

Max Iterations 100

The Matlab 2015b global optimization tool box (Matlab-Toolbox, 2015) was used

for experiments and the PSO parameters are set according to our experimental

setup as shown in Table 5.1.

Initially, the PSO creates particles at random with uniform distribution using

pswcreationuniform function within the defined lower bound and upper bound

given in Equation 5.7 and Equation 5.8. The Hybrid function is used to perform

constrained or unconstrained minimization or maximization. In our experiments,

we used fmincon function which provide constrained maximization for our ob-

jective function. The rest of the options MaxStallIterations, MaxStallTime, Ob-

jectiveLimit etc are kept Matlab default for PSO, detailed information can be

found on (Matlab-Toolbox, 2015).

The PSO process, illustrated in Figure 5.9 with respect to the PSO parameters

proposed in Table 5.1, is described as follows (Chavan and Adgokar, 2015).

• Initialize the population size with the number 50, which specifies how many

individuals there are in each of the iterations. Usually, the number 50 is

used for a problem with five or fewer variables, and the number of 200 is

used otherwise.

• Initialize swarm and each particle randomly with initial position and ve-

locity with the search space.
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• Calculate the maximum value of the objective function using Equation

(5.8).

• Initially, the first objective values and positions are inevitably considered

as personal best values and personal best positions. Further, the global

best value and position are chosen based on the best fitness value among

all particles and that the particle value and position are selected as global

best value and position in the whole swarm population.

• If the stopping criteria becomes false, then the velocity and position of the

particles are updated using Equation 5.5 and Equation 5.6 respectively.

• Finally, a new generation is updated and the PSO algorithm loops back to

calculate the fitness value and updated position for each particle. The up-

dated personal best value and position is compared to the previous personal

best value and position. If the new fitness value is better than previous one

then the personal best value and position are updated. The same process

is carried out for updating the global best value and position.

• The process is continued till the termination condition is satisfied. The de-

fault value for the generations is 100 multiplied by the number of variables

used, but we choose the best value for generation by experimentation with

different values.
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Figure 5.9: Flow chart of various stages to perform Particle Swarm
Optimization (PSO)

5.6 Experimental Setup

This section evaluates the performance of two multivariate change point algo-

rithms e.g. MEWMA & MCUSUM with optimization facet using GA & PSO

to automatically identify optimal parameter set for accurate change point detec-

tion. The different combination like MEWMA with GA & PSO and MCUSUM

with GA & PSO has been used for evaluating the performance of the change

point detection algorithms. The evaluation is performed on a real dataset us-

ing different metric measures such as accuracy, precision, sensitivity, G-means
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and F-measures. As in this study, we used multivariate approaches to analyze

and evaluate multivariate data for automatic change point detection. In mul-

tivariate data analysis, more than one characteristics of a system are evaluated

simultaneously and the relation among these characteristics are identified. The

MEWMA approach was proposed in section 3.3.2.1 which tunes the different

parameters including lambda, window size and significance value with the aim

to achieve better performance and accurate change point detection. MCUSUM,

discussed in section 5.2.3, has also been implemented as a multivariate approach

from literature to be used as a bench mark to our proposed technique MEWMA.

Additionaly, the GA and PSO have been discussed in section 4.2 and 5.5,which

are used to automatically identify optimal parameters set used for MEWMA

and MCUSUM, so as to maximize the objective function i.e. the F-measure.

The evaluation is performed using different metric measures and the experimen-

tal results show that the proposed scheme performs better than the benchmark

scheme. The detailed explanation about the real dataset is given in the following

section 5.6.1.

5.6.1 Real Dataset

The dataset used here was collected by (Patterson et al., 2017) from ten healthy

participants using 3-axis accelerometer sensor in order to evaluate the change

point detection algorithm. The participants consist of five females and five males

wearing shimmer sensing platform (Burns et al., 2010) (Patterson et al., 2017)

placed on their chest, right wrist ankle. The data for different activities was

collected and captured with a sample frequency of 102.4 Hz. The nine various

activities performed by each participant are presented in Table 5.2. The different

activities were classified as static, transitional and dynamic. In static activities,

the participant was asked to remain comfortably still such stand, sit while in

transitional activities, the data captures the transition between two activities

such as stand to walk, sit to lie. Moreover, the dynamic activities imply that

the activity inherently contains meaningful human movements such as walking,

running and vacuuming. The change points in the dataset were labelled man-
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ually based on the recorded time a participant was to change an activity. For

each participant, the resultant dataset contains a continuous data stream of ap-

proximately 35 minutes activities carried out according to the sequence given in

Table 5.2. The 95 labelled transitions recorded for each participant, which in

total becomes 950 in total for 10 participants (Patterson et al., 2017). In the

dataset, most of the transitions are from static to dynamic activities and vice

versa. However, the dataset also contains transitions form dynamic to dynamic

activity like waking to running. After the data collection, the activity execu-

tion of accelerometer data was wirelessly streamed to a received computer via

Bluetooth communication protocol. We have used the dataset 2 in my paper

entitle “Using genetic algorithms for optimal change point detection in activity

monitoring” which is the part of Chapter 4. By the time, the dataset used in

chapter 5 was not publicly available.

Table 5.2: The nine various activities performed by each participant

Activity Seq. Label Type Description

1 Standing Static Stand for 5 minutes (min)

2 Stand-sit Transitional Stand for 10 second (s), Sit for 10s (15 repetitions)

3 Sleeping Static Lie on sofa for 5 min

4 Stand-walk Transitional Stand for 10s, Walk for 20s (15 repetitions)

5 Sit-Lie Transitional Sit for 10s, Lie for 10s (15 repetitions)

6 Walking Dynamic Walk on treadmill at constant speed of 5 min

7 Running Dynamic Run on treadmill at constant speed of 5 min

8 Watching TV Static Sit on sofa for 5 min

9 Vacuum Dynamic Vacuum for 5 min

5.7 Results and Discussion

The real dataset as described earlier has been used in the evaluation of MEWMA

and MCUSUM approaches in change-point detection using GA and PSO to find

the optimal parameter set. As we are evaluating the multivariate data, the
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x, y and z acceleration magnitudes are captured and used as input to MEWMA

and MCUSUM approaches. Initially, both approaches used different parameters

including λ(0.1 to 1) for MEWMA and k=0.5 for MCUSUM, the significance

values (0.05,0.025,0.01,0.005) and the window sizes (1s,2s,3s) to find accurate

change point. Hence, GA and PSO was used to find and identify the optimal set

of parameters for MEWMA and MCUSUM. The F-measure metrics were used

as an objective function to analyze and evaluate the optimal change point in

activities using GA and PSO. A detected changes point is considered true, if

its index lies in the data stream,l ε z − f/4, ..., z + f/4 where z is the index of

manually labelled change point and f is the sampling frequency in Hz. Moreover,

the data with detected change points is sent periodically to the server which runs

the GA and PSO for optimization as shown in Figure 5.10.

Figure 5.11: Real dataset example of change point detection using MEWMA
for different activities. The x, y and z axis represent the MEWMA vectors of

the input observation of the accelerometer signal while the vertical lines
presents the change detection points detected by the MEWMA algorithm.
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Figure 5.12: Real dataset example of change point detection using MCUSUM
for different activities. The x, y and z axis represent the MCUSUM vectors of

the input observation of the accelerometer signal while the vertical lines
presents the change detection points detected by the MCUSUM algorithm.

The positive and negative detection is defined as true positive (TP), false posi-

tive (FP), true negative (TN) and false negative(FN) which have been explained

in detail in section 3.5. The positive and negative detection about change points

are classified for the purpose of different evaluation metrics measures. The real

dataset example of change detection using MEWMA and MCUSUM for different

activities are shown in Figure 5.11. and 5.12 respectively.

The accuracy, precision, specificity, sensitivity and G-means metrics were used

for evaluation of optimal parameter selection for MEWMA and MCUSUM al-

gorithm. The GA and PSO are used for optimal parameters selection for both

change detection algorithms. The F-measure metrics were used as an objective

function to analyze and evaluate the optimal change point in activity monitoring

using GA and PSO. Moreover, the evaluation metrics such as accuracy, preci-

sion, sensitivity, G-Means and F-measure are discussed in detail in section 3.6.

The limitation of this work is that we are using the same lambda value across

all variants, however, there is a possibility of using a set of lambda values si-

multaneously (one for each variant) that could be referred as fully Multivariate
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approach, and which will be addressed in our future work.

5.7.1 Accuracy

The MEWMA with PSO achieved highest accuracies of 99.9%, 99.7% and 99.3%

for window sizes (1s ,2s and 3s), λ (0.5, 0.6 & 0.7) and p=0.05 for the optimal

parameter set for 9 different activities. Correspondingly, the MEWMA with GA

achieved highest accuracies of 99.7%, 99.5% and 99% for window sizes (1s ,2s &

3s), λ (0.5, 0.6 & 0.7) and p=0.05 for the optimal parameter set of 9 different

activities as shown in Figure 5.13.

The MCUSUM with PSO achieved highest accuracies 99.5%, 99.4% and 99% for

window size (1s ,2s & 3s), k=0.5 and p=0.05 for the optimal parameter set of

9 different activities. Correspondingly, the MCUSUM with GA achieved highest

accuracies of 99.3%, 99.2% and 98.8% for window size (1s ,2s & 3s), k=0.5 and

p=0.05 for the optimal parameter set of 9 different activities as shown in Figure

5.14.

Figure 5.13: Comparison of Accuracy between MEWMA (PSO and GA)
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Figure 5.14: Comparison of Accuracy between MCUSUM (PSO and GA)

The accuracy is relatively high for both MEWMA (PSO & GA) and MCUSUM

(PSO & GA) because of the relatively high disproportionate number of TNs in

the data. The reason is the class imbalance problem (Galar et al., 2012) in our

dataset discussed earlier in section 4.3.3. The MEWMA and MCUSUM with

PSO achieved highest accuracy as compared to MEWMA and MCUSUM with

GA.

A one-sided t-test is performed to find the statistical significance for the accuracy

metric for 10 experiments repeatedly performed for each approach i.e. MEWMA

with PSO and MCUSUM with PSO. The results of the one-sided t-test evaluate

that the MEWMA with PSO is statistically significant by achieving the signifi-

cance 0.0207 which is less than the standard p-value=0.05. Therefore, MEWMA

with PSO outperformed than MCUSUM with PSO by achieving higher accuracy

for accurate change point detection as shown in Figure 5.13 and 5.14 respectively.

5.7.2 Precision

The maximum precisions attained for MEWMA with PSO are 60.78%, 50% and

45.45% while for MEWMA with GA are 57.50%,48% and 43% for the optimal

set of parameters using the same window sizes, lambda values and significance

value as discussed in the above section. The precision of MEWMA (PSO & GA)

132



Chapter 5

is represented in Figure 5.15.

Likewise, the MCUSUM (PSO & GA) has achieved maximum precision of about

55%, 45.98%, 40% while for MCUSUM with GA is about 52%,43% ,38% for

the same window sizes, k=0.5 and significance values for the optimal set of

parameters as discussed earlier. The precision of MCUSUM with PSO and GA

is represented in Figure 5.16.

Figure 5.15: Comparison of Precision between MEWMA (PSO and GA)

Figure 5.16: Comparison of Precision between MCUSUM (PSO and GA)

The higher precision is achieved for MEWMA (PSO & GA) than MCUSUM

(PSO & GA) as shown in Figure 5.15 and 5.16. However, the MEWMA with

PSO improved than MCUSUM with PSO approximately 5.60% for each window

size for accurate change point detection using optimal parameter set. The reason
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for low precision is due to the high number of occurrences of false alarms as our

algorithm is very sensitive and detects possible change points even if they are

small. A one-sided t-test is performed to find the statistical significance for

the precision metric for 10 experiments repeatedly performed for each approach

i.e. MEWMA with PSO and MCUSUM with PSO. The results of the t-test

evaluate that the MEWMA with PSO is statistically significant by achieving the

significance 0.0388 which is less than the standard p-value.

5.7.3 Sensitivity

The maximum sensitivity values achieved by MEWMA with PSO are 65.26%,

35.79% and 25% while 60.5%, 31.50% and 23.50% for MEWMA with GA using

the same optimal parameter set with window sizes (1s,2s,3s), λ (0.5, 0.6 0.7) and

p=0.05 as shown in Figure 5.17. The MEWMA with PSO has approximately

4.5% higher sensitive value on average for each window size than MEWMA with

GA. Likewise, the highest sensitivity was achieved for MCUSUM with PSO is

about 29.47%, 26.37% and 20% while 27.5%, 25% and 18.50% for MCUSUM

with GA using optimal parameter set with window sizes (1s,2s,3s), k=0.5 and

p=0.05 as shown in Figure 5.18.

Figure 5.17: Comparison of Sensitivity between MEWMA (PSO and GA)
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Figure 5.18: Comparison of Sensitivity between MCUSUM (PSO and GA)

The MCUSUM with PSO is improved approximately 1.5% on average for each

window size than MCUSUM with GA.

However, the analysis of MEWMA with PSO results in about 35.79%, 9.42%

and 5% higher sensitivity values in each window size respectively as compared

to MCUSUM(PSO). Also, MEWMA(GA) is improved about 33%, 6.5% and

5% for each window size respectively compared to MCUSUM(GA) as shown

in Figure 5.17 and 5.18. A one-sided t-test is performed to find the statistical

significance for the sensitivity metric for 10 experiments repeatedly performed for

each approach i.e. MEWMA with PSO and MCUSUM with PSO. The results of

the t-test evaluate that the MEWMA with PSO is highly statistically significant

by achieving the significance 0.0069 which is less than the standard p-value.

5.7.4 G-Means

The MEWMA with PSO achieved highest G-means is about 80.78%, 60.93%

and 39.73% for window size (1s ,2s and 3s), λ (0.5, 0.6 0.7) and p=0.05 for the

optimal parameter set for 9 different activities. On the other hand, the MEWMA

with GA achieved highest G-means is about 75.5%, 57.5% and 37% for window

size (1s ,2s and 3s), λ (0.5, 0.6 & 0.7) and p=0.05 for the optimal parameter

set of 9 different activities as shown in Figure 5.19. The MEWMA with PSO

is improved approximately 3% on average for each window size than MEWMA
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with GA.

Similarly, the MCUSUM with PSO achieved highest G-means for about 54.29%,

51.31% and 30% for window size (1s ,2s & 3s), k=0.5 and p=0.05 for the optimal

parameter set of 9 different activities. On the other hand, the MCUSUM with

GA achieved highest accuracy is about 52.5%, 48.5% and 27.5% for window size

(1s ,2s and 3s), k=0.5 and p=0.05 for the optimal parameter set of 9 different

activities as shown in Figure 5.20.

Figure 5.19: Comparison of G-Means between MEWMA (PSO and GA)

Figure 5.20: Comparison of G-Means between MCUSUM (PSO and GA)
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The MCUSUM with PSO is improved approximately 2.5% on average for each

window size compared with MCUSUM with GA.

However, the G-mean analysis of MEWMA (PSO & GA) and MCUSUM (PSO

& GA) was improved comapred with MEWMA (PSO) with about 26.5%, 9.5%

and 9.7% for each window size respectively as compared to MCUSUM(PSO).

Also, MEWMA(GA) is improved about 23%, 9% and 9.5% for each window size

respectively compared to MCUSUM(GA) as shown in Figure 5.19 and 5.20. A

one-sided t-test is performed to find the statistical significance for the accuracy

metric for 10 experiments repeatedly performed for each approach i.e. MEWMA

with PSO and MCUSUM with PSO. The results of the t-test evaluate that

the MEWMA with PSO is statistically significant by achieving the significance

0.0431 which is less than the standard p-value.

5.7.5 F-Measure

The maximum F-Measure was achieved for MEWMAwith PSO for about 62.94%,

41.72% and 30.44% compared with 60.5%, 39% and 27.5% for MEWMA with

GA using optimal parameter set with window sizes (1s,2s,3s), λ (0.5, 0.6 & 0.7)

and p=0.05 as shown in Figure 5.21.

Figure 5.21: Comparison of F-Measure between MEWMA (PSO and GA)
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The MEWMA with PSO is improved approximately 2.7% on average for each

window size than MEWMA with GA.

Likewise, the highest F-Measure that was achieved for MCUSUM with PSO is

about 40.29%, 35.62% and 22.94% while 37.5%, 33.5% and 20.5% for MCUSUM

with GA using optimal parameter set with window sizes (1s,2s,3s), k=0.5 and

p=0.05 as shown in Figure 5.22. The MCUSUM with PSO is improved ap-

proximately 2.4% on average for each window size than MCUSUM with GA. A

one-sided t-test is performed to find the statistical significance for the accuracy

metric for 10 experiments repeatedly performed for each approach i.e. MEWMA

with PSO and MCUSUM with PSO. The results of the t-test suggest that the

MEWMAwith PSO is statistically significant by achieving the significance 0.0246

which is less than the standard p-value.

Figure 5.22: Comparison of F-Measure between MCUSUM (PSO and GA)

However, the F-Measure analysis of MEWMA (PSO & GA) and MCUSUM

(PSO & GA) was improved with MEWMA (PSO) by about 22.65%, 6.1% and

7.5% for each window size respectively as compared to MCUSUM(PSO). Also,

MEWMA(GA) is improved about 23%, 6.5% and 7% for each window size respec-
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tively compared to MCUSUM(GA) as shown in Figure 5.21 and 5.22 respectively.

5.7.6 Computational Cost or Time Complexity

This section presents the empirical timings of both algorithm MEWMA (PSO &

GA) and MCUSUM (PSO & GA) for accurate change detection using optimal

parameter selection. The techniques are implemented in Matlab 2015b and ex-

periments are performed on a system with processor 3.40 GHz and 8GB RAM.

The Matlab tic toc function is used to calculate the time for optimal parameter

set with accurate change and high metric measures.

Figure 5.23: Comparison of Computational Cost between MEWMA (PSO
and GA)

The results in Figure 5.23 presents that MEWMA (PSO) took less time at about

17.56 min, 24.69 min and 27.5 min respectively for each window size compared

with MEWMA (GA) for optimal solution of accurate change detection. Likewise,

MCUSUM (PSO) also took less time about 23.6 min, 35.27 min and 40.20 min

respectively for each window size toward optimal solution of accurate change

detection as shown in Figure 5.24.
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Figure 5.24: Comparison of Computational Cost between MCUSUM (PSO
and GA)

Furthermore, the MEWMA (PSO) outperforms than MCUSUM (PSO) in achiev-

ing low computational cost of about 28.34 min, 30.12 min and 33 min for the

same window sizes towards optimal solution. Similarly, the MEWMA (GA) also

performed better than MCUSUM(GA) by using minimal computational cost of

about 35.5 min, 40.70 min and 44.20 min for the same window sizes towards opti-

mal solution. Also, the t-test results justify computational efficiency of MEWMA

with PSO over MCUSUM with PSO by proving statistical significance with 95%

confidence achieved after 10 repeated experiments were investigated. The PSO

and GA are both population based algorithm, however, PSO is a relatively recent

heuristic search algorithm compared with GA. PSO is computationally efficient

because it uses less number of functions than GA for evaluation towards optimal

solutions (Hassan et al., 2004). Hence, as we are more inclined towards online

activity monitoring which require lightweight algorithm for evaluation of data.

Therefore, the analysis of current results reflects that the MEWMA is a good

choice for online implementation for accurate change point detection. The com-

parison of MEWMA with PSO & GA and MCUSUM with PSO & GA is also

presented in Table 5.3 and 5.4 respectively.
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5.8 Chapter Summary

The multivariate approaches are used to analyze and evaluate multivariate data

for automatic change point detection. In multivariate data analysis, more than

one characteristics of a system evaluated simultaneously and the approach also

identify the relationship among these characteristics.

The proposed MEWMA approach which tunes the different parameters such as

lambda, which weights the current versus historical data, window size and signif-

icance value with the aim of achieving better performance and accurate change

point detection. Also, we implement MCUSUM a multivariate approach to use

as a bench mark for our proposed technique. Moreover, the GA and PSO are

used to automatically identify an optimal parameter set using different parame-

ters for MEWMA and MCUSUM, so as to maximize the objective function i.e.

the F-measure. The evaluation is performed using different metric measures and

the experimental results show that the proposed scheme outperforms than the

bench mark scheme. Also, the computation cost is less than the benchmark ap-

proach.Moreover, t-tests were also performed for each evaluation metric and the

results show that the proposed approach is statistically significantly better than

the benchmark technique.
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Conclusion and Future Work

6.1 Introduction

In this thesis, previous work has been improved by analyzing automatic and on-

line change detection in multivariate data in activity monitoring. The aim of this

research is to detect and identify specific transition that can be used in various

scenarios such as to identify patient vital sign in medical domain or generating

activity labels for the purposes of annotating real-world datasets. In Chapter 1,

Research Objectives have been highlighted which has been achieved through the

completion of a number of studies as follows.

Objective 1: Review of wearable sensors that can be used
for human activity monitoring.

Chapter 2 provided a review of wearable sensors that have been used for human

activity monitoring and detection. The information about different kind of ac-

tivities monitored using these sensors were also provided. Moreover, the analysis

of different segmentation and feature extraction approaches were also discussed.

Further, chapter 2 discussed the different approaches for change point detection

in time series data that identify the key challenge of multivariate data analysis,

which was the focus of ensuing work.
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Objective 2: To evaluate a multivariate approach for on-
line change and identify the optimal parameter set for ac-
curate change-point detection in activity monitoring with
high metric measures.

Data was collected from tri-axle accelerometer (Zhang et al., 2011) for different

activities which consist of static and dynamic activities. The x, y and z axis

of an accelerometer signal is divided into multiple windows of different sizes.

The MEWMA with sliding window algorithm was applied for accurate change

point detection, which was developed in Matlab. Also, the univariate algorithm

was presented by (Jain and Wang, 2015) implemented in Matlab and used as a

benchmark to our proposed approach. The different metric measures were also

calculated for both approaches to evaluate results for accurate change point de-

tection.

Objective 3: To implement and evaluate optimization algo-
rithms for the multivariate approach to automatically iden-
tify optimal parameter set for accurate change-point detec-
tion.

Work described in Chapter 4, provides detailed information about employing a

genetic algorithm to automatically identify an optimal parameter set, using a

fitness function for MEWMA, parameters such as the forgetting parameter λ,

the window size, and a significance value for each activity so as to maximize the

Fitness Function. Moreover, within this chapter, optimal parameter selection fa-

cilitates an algorithm to detect accurate change points and minimize false alarms.

The performance of a real dataset and a synthetic dataset were evaluated based

on accelerometer data collected for a set of different activities.
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Objective 4: To develop an evaluation framework to com-
pare different multivariate and optimization approaches for
change-point detection. The fusion of such approaches could
empower a system to automatically identify optimal param-
eter set for accurate change detection.

Chapter 5 investigated and provided information about using the Multivari-

ate Cumulative Sum Control Chart (MCUSUM) to automatically detect change

points in user activities. Also, the Particle Swarm Optimization (PSO) is dis-

cussed in detail and used to identify optimal parameter settings for MCUSUM

and MEWMA for accurate change point detection. The MCUSUM is also used

as a benchmark to our proposed technique MEWMA. Moreover, in Chapter 5,

MEWMA and MCUSUM approaches are used with GA and PSO to automati-

cally identify an optimal parameter set using different parameters for MEWMA

and MCUSUM, so as to maximize the objective function, namely the F-measure.

Data was collected using tri-axle accelerometers sensors (Patterson et al., 2017)

placed on the chest, wrist and ankle of the participants. The data for different

nine activities was collected and captured with a sample frequency of 102.4 Hz.

The different metric measures were also calculated for both approaches to eval-

uate results on a real dataset for accurate change point detection.

Furthermore, the following section will provide detail information relating to the

contributions to knowledge from this work and possible areas for future work.

6.2 Summary of contribution

This thesis contributes to the area of change point detection in online activity

monitoring. Multivariate data has been analyzed and investigated using existing

sensors, which have been used for collecting data for various activities
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6.2.1 Taxonomy of change point detection in activity mon-

itoring (Objective 1)

Literature contained in chapter 2, presented a taxonomy of wearable sensors

and monitoring of different activities using these sensors. The synthesis and

integration of this information determine the current key challenge of online

change point detection in multivariate data as a key issue to be addressed.

6.2.2 Multivariate approach for online change in activity

monitoring (Objective 2)

Chapter 3 is the first to investigate the analysis of univariate and multivari-

ate data obtained from tri-axle accelerometer (Zhang et al., 2011) for accurate

change point detection. The analysis concluded that multivariate data gives a

richer picture of the process than univariate data to identify accurate change

point detection. The evaluation was performed using different metric measures

such as accuracy, precision, G-means and F-measure.

Therefore, the multivariate exponentially weighted moving average (MEWMA)

has been used to identify detect change points corresponding to different transi-

tions in user activity. The results evaluation shows that the proposed standard

MEWMA provides better accuracy and improved on the other metric measures

such as precision, G-means and F-measure by more than 12%, 24% and 13%

respectively as compared with the univariate approach presented by (Jain and

Wang, 2015)

Moreover, within this thesis, the different parameters of MEWMA were eval-

uated to select the optimal parameters. The standard MEWMA and optimal

parameters were used to analyze the performance of MEWMA. The optimal pa-

rameters of MEWMA outperformed standard values for real world accelerometer

data for accuracy, precision, G-means and F-measure compared with the stan-
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dard approach. Also, the MEWMA approach achieved low computation costs

and can run in the online scenario.

6.2.3 Optimization algorithm for the multivariate approach

to automatically identify optimal parameter set for

accurate change-point detection (Objective 3)

Chapter 4 delineated genetic algorithm to identify the optimal set of parameters

for the MEWMA approach and automatically detect change points correspond-

ing to different transitions in the user activities. Within this chapter, the genetic

algorithm (GA) is used to mimic the process of evolution by taking a population

of strings, which encodes possible solutions, and combining them based on the

fitness function to produce solutions that are high performing. The fitness func-

tion is the core component of the GA. It evaluates each individual parameter

set in the population to find the solution with an optimal fitness value. The

F-measure is used as an objective function for evaluation in GA because it is a

combination of precision and recall.

Within this chapter, the experiments were performed on real and synthetic

datasets. The evaluations results of real dataset reflected that the F-measure

was higher about 50% to 66.7% for optimal set using GA than the 40% to 50%

for non-optimized results. Moreover, the accuracy was also improved from 99.4%

to 99.8% with optimization when compared with the non-optimized accuracy of

98.5% as opposed to 99.4%.

Based on the results and findings in this thesis, it can be concluded that the

optimal set of parameters selected using the GA outperformed on real world

accelerometer data in terms of the accuracy and the F-measure. In this thesis,

the automatic optimization of the optimal parameter set was considered within

the context of activity monitoring. Moreover, the MEWMA is a lightweight

algorithm and can be incorporated into real world systems such as mobile-based
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applications for the collection and active sampling of labeled data. The change

points in the data can be used to identify changes in activities and recognize

and monitor good behavior such as healthy exercise patterns based on these

activities.

6.2.4 Evaluation framework to compare different multi-

variate and optimization approaches for change-point

detection. (Objective 4)

Chapter 5 is first to explore the evaluation results from comparison of Multivari-

ate approaches such as MEWMA and MCUSUM to automatically detect change

points in user activities. In addition, the GA and PSO were used to automati-

cally identify an optimal parameter set using different parameters for MEWMA

and MCUSUM, so as to maximize the objective function that is F-measure.

Within this thesis, the evaluation was performed using different metric measures

for MEWMA (PSO & GA) and MCUSUM (PSO & GA). The experimentation

of different combination evaluation reflected that the MEWMA with PSO out-

perform than the rest in terms achieving high accuracy, precision, sensitivity,

G-means and F-measure. Hence, a t-test was also performed to assess statistical

significance for all evaluation metrics and the results justified that MEWMA

with PSO is statistical significance with 95% confidence achieved for all metrics

measures.

Moreover, the change detection in sensor-based time series data is valuable when

monitoring human behaviour to detect and analyse changes. Such analysis can

be used to detect patient vital signs like heart beat against various activities

performed. Analysing sensor-based time series data can also be used to rec-

ognize and monitor good behaviour such as healthy exercise patterns based on

performed activities.
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Furthermore, in this thesis, we mainly focused on online activity monitoring

which require lightweight algorithm for evaluation of data. Therefore, the anal-

ysis of current results reflects that the MEWMA with PSO is a good choice for

online implementation for accurate change point detection.

Future Work

In this thesis, different metrics were used for evaluation such as Accuracy, Pre-

cision, Sensitivity, Specificity etc. However, based on the datasets used, metrics

such as accuracy and specificity are very high while metrics such as precision and

sensitivity are very low. The increase and decrease occurs because of the class

imbalance problem as the class distributions are highly imbalanced in the data

set.

Class imbalance problem

The class-imbalance problem is a real-world problem and exist in many real

world applications (Galar et al., 2012). The problem happens when the total

number of a class data (positive) is less than the total size of other classes of

data (negative). This highlights the skewed distribution of classes within the

dataset and identifies that the minority class is the class of interest. The class

imbalance problem becomes more challenging in real time scenario, when the data

streams arrive continuously and the class distribution is imbalanced. Future work

could be therefore to explore and investigate the different online class imbalance

learning approaches that can be used to balance the minority class in the dataset

and possibly improve the classification results. Different approaches such as

Oversampling based Online Bagging (OOB) and Undersampling based Online

Bagging (UOB) (Wang et al., 2013) could be used to address the online class

imbalance problem in the dataset.
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Accelerometer placement

The effectiveness of accelerometer location is also very important to get more

detailed information about the different activities. For example, for walking

activity, the accelerometer placement on ankle give more detailed information

about the activity rather than placed on chest (Cleland et al., 2013). However,

this could also be important for mobile sensing application when the accelerom-

eter does not having fixed location. Hence, the future work would be to explore

the accelerometer location for different activities to obtain more and detailed

information related to each activity which can be used for analysis of change

detection in different user activities.

Sensor Data Fusion

Another promising direction of our research could be the data fusion obtained

from multiple sensors such as accelerometer, Gyroscope and GPS, which can im-

prove the evaluation metric measures. The data fusion from such sensors could

provide a more unified picture and global view of the data that can help in iden-

tifying and analyzing the data for accurate change detection. The number of

algorithms like Kalman filter (KF), Particle Filtering (PF) and Weighted Av-

erages have been used for data fusion in literature. The Kalman Filter (KF)

(Al-Jawad et al., 2013) is a popular statistical state estimation method that can

be used to fuse dynamic signal level data. The state estimates of the system are

determined based on a recursively applied prediction and update algorithm and

assumes the state of a system at the current time is based on the state of the

system at the previous time interval. One of the main advantages of the KF is

that it is computationally efficient Luo et al. (2011). The Particle filtering (PF)

(Kotecha and Djuric, 2003) is a stochastic method to estimate moments of a tar-

get probability density, when they can’t be computed analytically. The principle

is to generate random numbers called particles, from an “importance” distribu-

tion that can be easily sampled. Then, each particle is associated a weight that
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corrects the dissimilarity between the target and the importance probabilities.

The weighted averages is a simple signal level fusion method for combining com-

mensurate information by taking an average of all the sensor readings (Luo and

Kay, 1990). The contribution of the “worst” sensor’s error will be alleviated in

the final estimate, although not eliminate it completely. To reduce the impact of

large erroneous sensor readings weighted averages can be used (Yang and Yang,

2006). However, the data fusion of numerous sensor data is quit challenging and

required more comprehensive analysis to evaluate the data.

Of the issues raised for future work, the imbalanced class problem is highly

significant, as change points are rare events in the context of the frequency of

data collection and we plan to address this issue in our future work.
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